Appendix A.9.1d

Ground Investigations Reports - Part 4

A.9.1d Ground Investigations Reports - Part 4

AGP23244_01

REPORT

ON THE

GEOPHYSICAL INVESTIGATION

AT

GALWAY RACECOURSE,

CO. GALWAY,

FOR

GROUND INVESTIGATION

IRELAND LIMITED.

APEX Geophysics Limited Unit 6, Knockmullen Business Park Gorey Co. Wexford

> T: 0402 21842 E: info@apexgeophysics.ie W: www.apexgeophysics.com

19TH APRIL 2024

PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOPHYSICS LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IT BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

PROJECT NUMBER	AGP23244		
AUTHOR	CHECKED	REPORT STATUS	DATE
EurGeol Dr. Yvonne O'Connell P.Geo, Ph.D., M.Sc. (geophysics)	Tony Lombard M.Sc (geophysics)	V.01	19 [™] April 2024

CONTENTS

1.	EXECUTIVE SUMMARY1
2.	INTRODUCTION
2.1	Survey Objectives
2.2	Site Background2
2.2.	1 Geology
2.2.	3 Groundwater
	1 Direct Investigation Data
2.4	Survey Rationale
3.	RESULTS
3.1	ERT
3.2	Seismic refraction profiling6
3.3	Integrated Interpretation
4.	RECOMMENDATIONS
REFERE	NCES
APPEN	DIX A: DETAILED GEOPHYSICAL METHODOLOGY10
Electr	ical Resistivity Tomography10
Seism	ic Refraction Profiling10
Spatia	al Relocation
APPEN	DIX B: EXCAVATABILITY
APPEN	DIX C: DRAWINGS

1. EXECUTIVE SUMMARY

APEX Geophysics Ltd. was requested by Ground Investigations Ireland Limited (GII) to carry out a geophysical survey for a proposed development in the infield of Galway Racecourse, Co. Galway, which will involve earthworks excavation and the drilling of two trial wells.

The purpose of the geophysical investigation was to provide information on the type, thickness and stiffness of the soils, the depth to and type of bedrock, the rock excavatability, the presence of potential karst features and any anomalous features.

The racecourse is located northeast of the city of Galway in Ballybrit, Co. Galway. The c. 3.4 ha site is located inside the racetrack and comprises predominantly greenfield with a hardcore area in the northeast. Site topography rises from 43.2 mOD in the southwest to 52.9 mOD in the north of the site.

The Geological Survey of Ireland (GSI) Quaternary Sediments map for the area indicates till across the site with subcropping/outcropping rock south/southeast of the site. Trial Pits and cable percussive boreholes encountered Made Ground comprising of sandy gravelly silty clay over soft to firm slightly sandy gravelly clay, becoming stiff to very stiff with depth, to refusal at depths from 2.0 to 4.3 m bgl. A well (TW02) was drilled in the northeast of the site and encountered 2 m Made Ground over 20 m of sand without encountering bedrock.

The GSI Geology map indicates Burren Formation limestone across the site. This formation is prone to karstification. Karst features are mapped c. 550 m north of the site and springs are mapped c. 1 km east and west of the site.

The geophysical survey, carried out between the 21st and 23rd February 2024, consisted of 6 ERT and 11 seismic refraction profiles.

The geophysical data have been interpreted as indicating:

- 1. A thin upper layer (average thickness 0.75 m) of soft to firm sandy gravelly silt/clay or Made Ground,
- 2. Underlain by firm to stiff sandy gravelly silt/clay soils to an average depth of 4.4 m bgl,
- 3. Underlain in the west and southwest by very stiff/consolidated sandy gravelly silt/clay with localised pockets of very dense clayey sand/gravel. The trial pits and cable percussive boreholes refused on this layer. This very stiff material varies in thickness from 0.7 to 23 m suggesting the presence of a deep infilled bedrock depression open to the west.
- 4. Underlain by a layer (with an average thickness of 2 m) of highly to moderately weathered/karstified limestone,
- 5. Over slightly weathered to fresh limestone.

The combined soil thickness (Layers 1, 2 & 3) varies from 2.5 to 26.3 m thick, with an average thickness of 14.9 m. Soil is thinnest in the northeast and to the southeast. The interpreted base of the soils varies from 18.1 to 48.5 mOD.

Six coreholes are recommended to confirm the findings of the geophysical investigation. All borehole locations should be screened for buried services and hand-dug to check for pipes, cables, etc. prior to boring.

The geophysical interpretation should be reviewed based on the findings of any further direct investigation.

2. INTRODUCTION

APEX Geophysics Ltd. was requested by Ground Investigations Ireland Limited (GII) to carry out a geophysical survey for a proposed development in the infield of Galway Racecourse, Co. Galway, which will involve earthworks excavation and the drilling of two trial wells. The purpose of the geophysical investigation was to provide information on the sub-soil conditions across the site.

2.1 Survey Objectives

The objectives of the investigation were to provide information on the:

- Type, thickness and stiffness of the soils,
- Depth to and type of bedrock,
- Excavatability,
- Presence of potential karst features,
- Presence of anomalous features.

2.2 Site Background

The racecourse is located northeast of the city of Galway in Ballybrit, Co. Galway (Fig. 2.1). The c. 3.4 ha site is located inside the racetrack and comprises predominantly greenfield with an area of hardcore in the northeast (Fig. 2.1). Site topography slopes up from 43.2 mOD in the southwest to 52.9 mOD in the north of the site.

Fig 2.1: Survey area location.

2.2.1 Geology

The Geological Survey of Ireland (GSI) 1:100k Bedrock Geology map for the area (GSI, 2018) indicates that the site is underlain by pale grey clean skeletal limestone of the Burren Formation (Fig. 2.2). Rock outcrops are indicated in the south of the site and outcropping rock was observed in this area during surveying.

Geophysical Investigation AGP23244 Galway Racecourse for Ground Investigations Ireland Limited

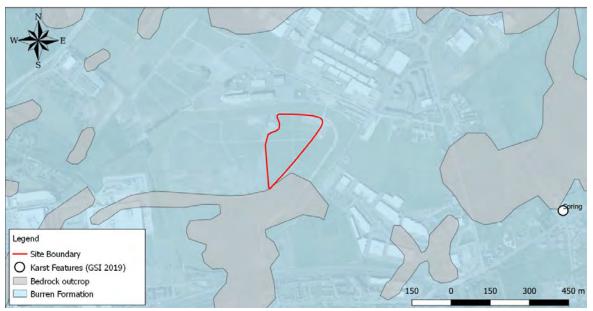


Fig. 2.2: GSI 100k Bedrock geology.

The Burren Formation is known to be prone to karstification. Karst may be defined as the whole or partial dissolution of limestone bedrock by the action of water and the subsequent whole or partial infill with soil material. The degree of karstification depends on the quantity of limestone which has been dissolved and subsequently infilled. Karst features are mapped on the GSI karst database c. 550 m north of the site, springs are mapped c. 1 km east and swallow holes, springs and a cave are mapped 1.75 km to the west.

2.2.2 Soils

The GSI Quaternary Sediments map for the area (GSIc, 2019) indicates that the site is in an area of till derived from limestones with karstified bedrock subcropping/outcropping south/southeast of the site (Fig. 2.3).

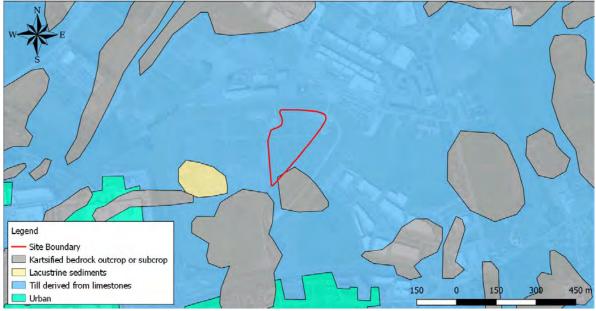


Fig. 2.3: GSI Quaternary sediments.

2.2.3 Groundwater

The groundwater vulnerability rating for the site (GSIb, 2019) is predominantly classified as 'Extreme' with 'Extreme- Rock at or near the surface or karst' in the southeast of the site (Fig. 2.4). The Burren Formation is classified as a 'Regionally Important aquifer – karstified (conduit)' (GSIa, 2019).

Fig. 2.4: Groundwater vulnerability.

2.3 Historical Data

The historical 6 inch sheet for the area shows outcropping rock south/southeast of the site with stony drift northeast of the site (Fig. 2.5).

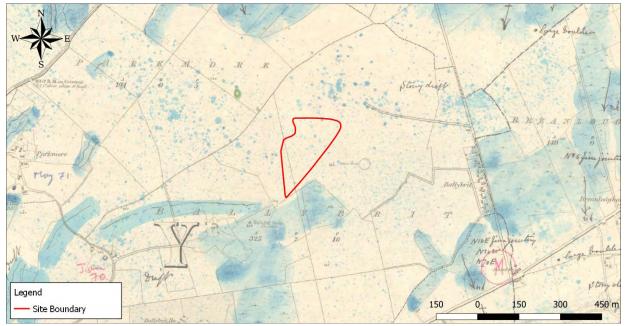


Fig. 2.5: The GSI historical 6-inch map.

2.3.1 Direct Investigation Data

Three wells (TW01 to TW03) were drilled at the racecourse at the time of surveying. Well TW02 was drilled within the geophysical site extents and encountered 2 m Made Ground over 20 m of sand without encountering bedrock. TW01, drilled 155 m to the east, encountered limestone bedrock from 5–100 m bgl. TW03, drilled 155m southeast of the site encountered limestone bedrock from 5–150 m bgl with minor fissures/water strikes.

Eleven trial Pits (TP01-TP11) were opened and 3 cable percussive boreholes (BH01-BH03) were drilled across the site. They encountered Made Ground comprising of sandy gravelly silty clay over soft to firm slightly sandy gravelly clay, becoming stiff to very stiff with depth, to refusal at depths from 2.0 to 4.3 m bgl.

2.4 Survey Rationale

The proposed geophysical investigation consisted of Electrical Resistivity Tomography (ERT) and Seismic Refraction profiling:

ERT images the resistivity of the materials in the subsurface along a profile to produce a cross-section showing the variation in resistivity with depth, depending on the length of the profile. Each profile is interpreted to determine the material type along the profile at increasing depth, based on the typical resistivities returned for Irish ground materials.

Seismic Refraction Profiling measures the P-wave velocity of refracted seismic waves through the soil and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. This method can profile depth to bedrock and provide information on the quality/strength of the rock.

As with all geophysical methods the results are based on indirect readings of the subsurface properties. The effectiveness of the proposed approach will be affected by variations in the ground properties. By combining a number of techniques, it is possible to provide a higher quality interpretation and reduce any ambiguities which may otherwise exist. Further information on the detailed methodology of each geophysical method employed in this investigation is given in **APPENDIX A: DETAILED METHODOLOGY**.

3. **RESULTS**

The survey was carried out between the 21st and 23rd February 2024. The geophysical survey locations are shown on Drawing AGP23244_01 (Appendix C).

3.1 ERT

Six resistivity profiles (R1 to R6) were recorded across the site. The results are presented on Drawings AGP23244_R1 to AGP23244_R6. The resistivity values at this site have been interpreted in conjunction with the seismic refraction and ground investigation data as follows:

Resistivity (Ohm-m)	Interpretation
50 - 250	Sandy gravelly SILT/CLAY
250 –325	Clayey SAND/GRAVEL
250-275	Possible Weathered/karstified LIMESTONE
>275	LIMESTONE

3.2 Seismic refraction profiling

Eleven seismic refraction profiles (S1 to S11) were recorded across the site. The results are presented on Drawings AGP23244_R1 to AGP23244_R6 Appendix C. The seismic data in conjunction with the ERT and ground investigation data has been interpreted as indicating the following velocity layers:

Layer	Velocity (m/s)	Velocity (m/s)	Thickness (m)	Interpretation	Estimated Stiffness/ Rock Quality	Estimated Excavatability
1	323-445	369	1.6 – 7.2	Soil	Soft-Firm/Loose - Medium Dense	Diggable
2	564-908	702	(ave. 4.4)	Soil	Firm-Stiff/Medium Dense-Dense	Diggable
3*	2302-2683	2475	0.7 – 23.0 (ave. 10.6)	Soil	Very Stiff/Very Dense	Diggable
	2302-2083	2475	0.5 - 5.0 (ave. 2.0)	Weathered/Karstified Rock	Fair	Break/Blast
4	>2750			Slightly Weathered – Fresh Bedrock	Good	Break/Blast

*Layer 3 velocities are generally typical of slightly weathered rock however here appear to indicate very stiff/very dense soils.

3.3 Integrated Interpretation

The ERT and seismic refraction data have been combined to produce the interpreted cross sections on Drawings AGP23244_R1 to AGP23244_R6. The combined data has been interpreted as follows:

Layer	Velocity (m/s)	Resistivity (Ohm-m)	Interpretation	Estimated Stiffness/ Rock Quality	Estimated Excavatability
1	323-445	50-250	Sandy gravelly SILT/CLAY or Made Ground	Soft-Firm	
2	564-908	50 - 250	Sandy gravelly SILT/CLAY	Firm-Stiff	Diggable
3		50-250	Sandy gravelly SILT/CLAY	Very Stiff	Diggable
	2302-2683	250 –325	Clayey SAND/GRAVEL	Very Dense	
4	2302-2085	250-275	Possible Highly - Moderately Weathered/	Fair	Break/Blast
			Karstified LIMESTONE		
5	2624-3025	>275	Slightly Weathered – Fresh LIMESTONE	Good	Break/Blast

The geophysical data have been interpreted as indicating:

- 1. A thin upper layer (average thickness 0.75 m) of soft to firm sandy gravelly silt/clay or Made Ground,
- 2. Underlain by firm to stiff sandy gravelly silt/clay soils to an average depth of 4.4 m bgl,
- 3. To the west and southwest of the survey area the geophysical data suggests the presence of a deep infilled bedrock depression open to the west. The soils comprise of very stiff sandy gravelly silt/clay, with very high seismic velocities (average 2475 m/s) that would be typical of slightly weathered rock, indicating that very consolidated material is present. The interpreted thickness of this material varies from 0.7 to 23 m. The trial pits and cable percussive boreholes refused on this layer. Some localised very dense clayey sand/gravel has been interpreted in places (R1, R5 & R6).

Given the high velocity of the very stiff sandy gravelly silt/clay, the contact with weathered/karstified limestone is difficult to define across the site. The bedrock layers have been interpreted as follows:

- 4. An upper layer (with an average thickness of 2 m) of possible weathered/karstified limestone which the low resistivities (250-275 Ohm-m) suggest would be highly to moderately weathered with some clay infill,
- 5. Over slightly weathered to fresh limestone. The resistivities are relatively low (275-400 Ohm-m) for the upper 4 m of this limestone layer, possibly suggesting some degree of karstification.

If any rock excavation is planned, the seismic velocities indicate that the limestone would require breaking or blasting.

The interpreted thickness of Layers 1 and 2 combined is plotted on Drawing AGP23244_02 and varies from 1.6 to 7.2 m thick, with an average thickness of 4.4 m.

The interpreted combined soil thickness (Layers 1, 2 & 3) is plotted on Drawing AGP23244_03 and varies from 2.5 to 26.3 m thick, with an average thickness of 14.9 m. Soil is thinnest in the northeast and to the southeast. The interpreted base of the soils is plotted on Drawing AGP23244_04 and varies from 18.1 to 48.5 mOD.

The interpreted combined thickness of the soils and highly to moderately weathered/karstified limestone is plotted on Drawing AGP23244_05 and ranges in thickness from 2.9 to 29.2 m, with an average thickness of 17 m. The interpreted base of the weathered/karstified rock layer is plotted on Drawing AGP23244_06 and varies from 16.1 to 48 mOD.

The 20 m of sand encountered in well TW02 has not been interpreted on the geophysical data but the absence of bedrock to a depth of 22 m bgl has been incorporated in to the contour maps above.

NOTE: The contours on maps AGP23244_02 to AGP2244_06 include a degree of interpolation and extrapolation between the measured data points and reference to the type, number and location of these points should be made when assessing the significance of these data. In addition, significant anisotropy exists between profiles recorded E-W and N-S resulting in additional edits to the values contained in the drawings.

4. **RECOMMENDATIONS**

Rotary cored boreholes are recommended to confirm the findings of the geophysical investigation as follows:

Comment	Easting	Northing
PBH1	533636.7	727908.5
PBH2	533713.5	727890.8
PBH3	533638.6	727865.5
PBH4	533677.5	727857.9
PBH5	533697.8	727838.2
PBH6	533645.6	727766.6

All borehole locations should be screened for buried services and hand-dug to check for pipes, cables, etc. prior to boring.

In karst environments, changes in surface water drainage or groundwater levels associated with proposed construction activities may re-activate dormant karst features and cause subsidence of the overburden materials. In order to minimize the risk of subsidence all drains should be sealed and surface water disposed of away from the construction area. Prior to construction a surface water management plan is advised.

Foundation design for any structures should take into account the presence of possible cavities in the rock and overburden and foundations capable of spanning voids that may migrate to the surface, should be incorporated into the design. Any cavities exposed during stripping of topsoil or excavation of rock should be backfilled in the appropriate manner for karstified limestone areas as advised by a competent geotechnical engineer.

If any bedrock excavation is proposed, a detailed assessment of excavatability should be carried out combining the results of the geophysical survey, rotary core drilling, strength testing, and trial excavation pits down to formation level using a high-powered excavator of similar rating to that to be used during construction. A more detailed discussion of velocity and excavatability is contained in Appendix B.

The geophysical interpretation should be reviewed based on the findings of any further direct investigation.

Geophysical Investigation AGP23244 Galway Racecourse for Ground Investigations Ireland Limited

REFERENCES

Bell F.G., 1993; 'Engineering Geology', Blackwell Scientific Press.

Geotomo Software, 2011; 'RES2DINV Users Manual', Malaysia.

GSIa, 2019; Bedrock Aquifer Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

GSI, 2018; Bedrock Geology 1:100,000 Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

GSIb, 2019; Groundwater Vulnerability Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

GSIc, 2019; Quaternary Subsoils Shapefile. <u>http://www.gsi.ie/Mapping.htm</u>

GSI Geotechnical Database, Report 2348

Redpath, B.B., 1973; 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

SeisImager, 2009; 'SeisImager / 2D Manual version 3.3'. OYO Corporation.

Soske, J.L., 1959; 'The blind zone problem in engineering geophysics', Geophysics, 24, pp 359-365.

APPENDIX A: DETAILED GEOPHYSICAL METHODOLOGY

A combination of geophysical techniques was used to provide a high-quality interpretation and reduce any ambiguities, which may otherwise exist.

Electrical Resistivity Tomography

Electrical Resistivity Tomography was carried out to provide information on lateral variations in the overburden material as well as on the underlying overburden and bedrock.

Principles

This surveying technique makes use of the Gradient resistivity array. The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. This method involves the use of electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

Data Collection

Profiles were recorded using an ABEM LS4 resistivity meter, imaging software, four 21 takeout multicore cables and up to 80 stainless steel electrodes. Saline solution was used at the electrode/ground interface in order to gain a good electrical contact required for the technique to work effectively. The recorded data were processed and viewed immediately after surveying.

Data Processing

The field readings were stored in computer files and inverted using the RES2DINV package (Geotomo Software, 2006) with up to 5 iterations of the measured data carried out for each profile to obtain a 2D-depth model of the resistivities.

The inverted 2D resistivity models and corresponding interpreted geology are displayed on the accompanying drawings alongside the processed seismic sections. Profiles have been contoured using the same contour intervals and colour codes. Distance is indicated along the horizontal axis of the profiles.

Seismic Refraction Profiling

Principles

This method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities.

Seismic profiling measures the p-wave velocity (Vp) of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher Vp velocities while soft, loose or fractured materials have lower Vp velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

Geophysical Investigation AGP23244 Galway Racecourse for Ground Investigations Ireland Limited

Data Collection

A Geode high resolution 24 channel digital seismograph, 24 10HZ vertical geophones and a 10 kg hammer were used to provide first break information, with a 24 take-out cable. Equipment was carried and operated by a two-person crew.

Readings are taken using geophones connected via multi-core cable to a seismograph. The depth of resolution of soil/bedrock boundaries is determined by the length of the seismic spread, typically the depth of resolution is about one third the length of the profile.(eg. 69m profile ~23m depth, 33m profile ~ 11m depth).

Data Processing

First break picking in digital format was carried out using the SeisImager/2D PICKWIN software program from Geometrics to construct p-wave (Vp) traveltime plots for each spread. The processing and interpretation uses the ray-tracing and tomographic inversion methods, to acquire depths to boundaries and the P-wave velocities of these layers, using the SeisImager/2D PLOTREFA program. The processed seismic data are displayed in Appendix B.

SeisImager/2D interprets seismic refraction data as a laterally varying layered earth structure. The program includes three methods for data analysis, time-term inversion, the reciprocal method and tomography. The tomography method creates an initial velocity model, then traces rays through the model, comparing the calculated and measured traveltimes. The model is then modified and the process repeated to minimise the difference between the calculated and measured times. The data was processed using this method and was then converted to a layer model for display and interpretation.

Approximate errors for Vp velocities are estimated to be +/- 10%. Errors for the calculated layer thicknesses are of the order of +/-20%. Possible errors due to the "hidden layer" and "velocity inversion" effects may also occur (Soske, 1959).

Spatial Relocation

All the geophysical investigation locations were acquired using a Trimble Geo 7X high-accuracy GNSS handheld system using the settings listed below. This system allows collection of GPS data with c.20mm accuracy.

Projection:	Irish Transverse Mercator
Datum:	Ordnance
Coordinate units:	Metres
Altitude units:	Metres
Survey altitude reference:	MSL
Geoid model:	Republic of Ireland

APPENDIX B: EXCAVATABILITY

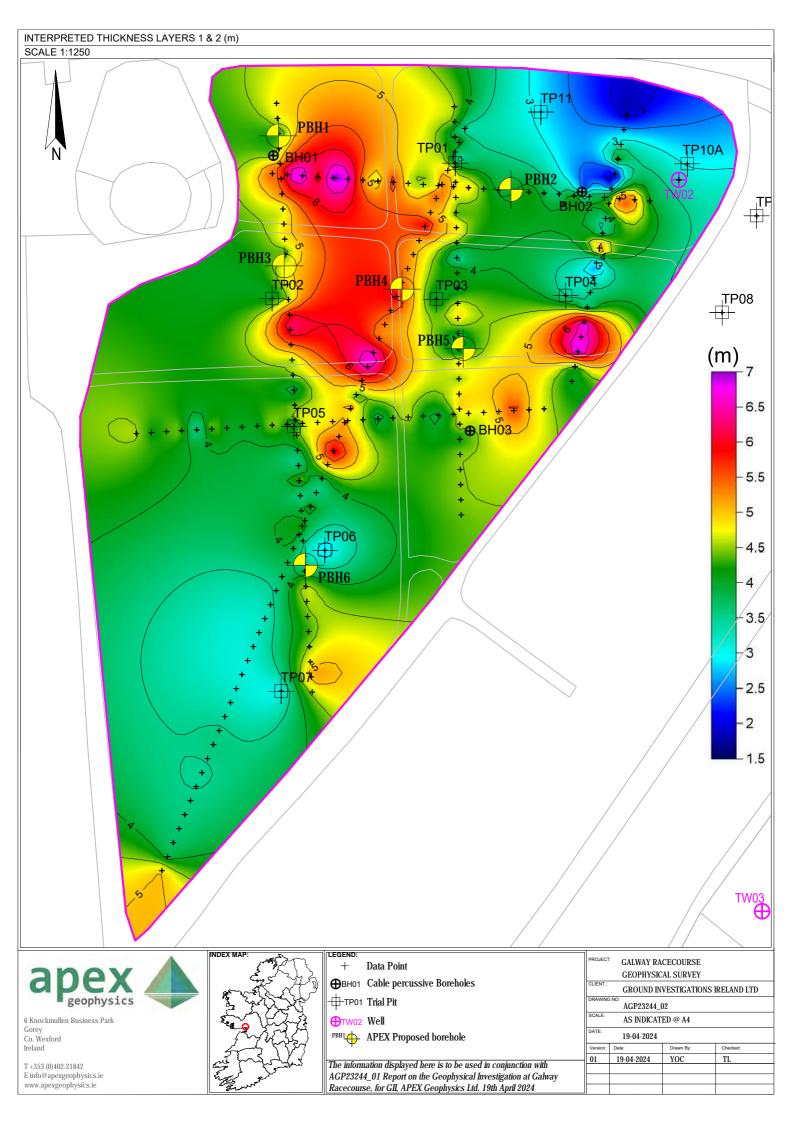
The seismic velocity of a rock formation is related to characteristics of the rock mass which include rock hardness and strength, degree of weathering and discontinuities. Usually the velocity is just one of several parameters used in the assessment of excavatability. The excavatability of a rock formation is favoured by the following factors:

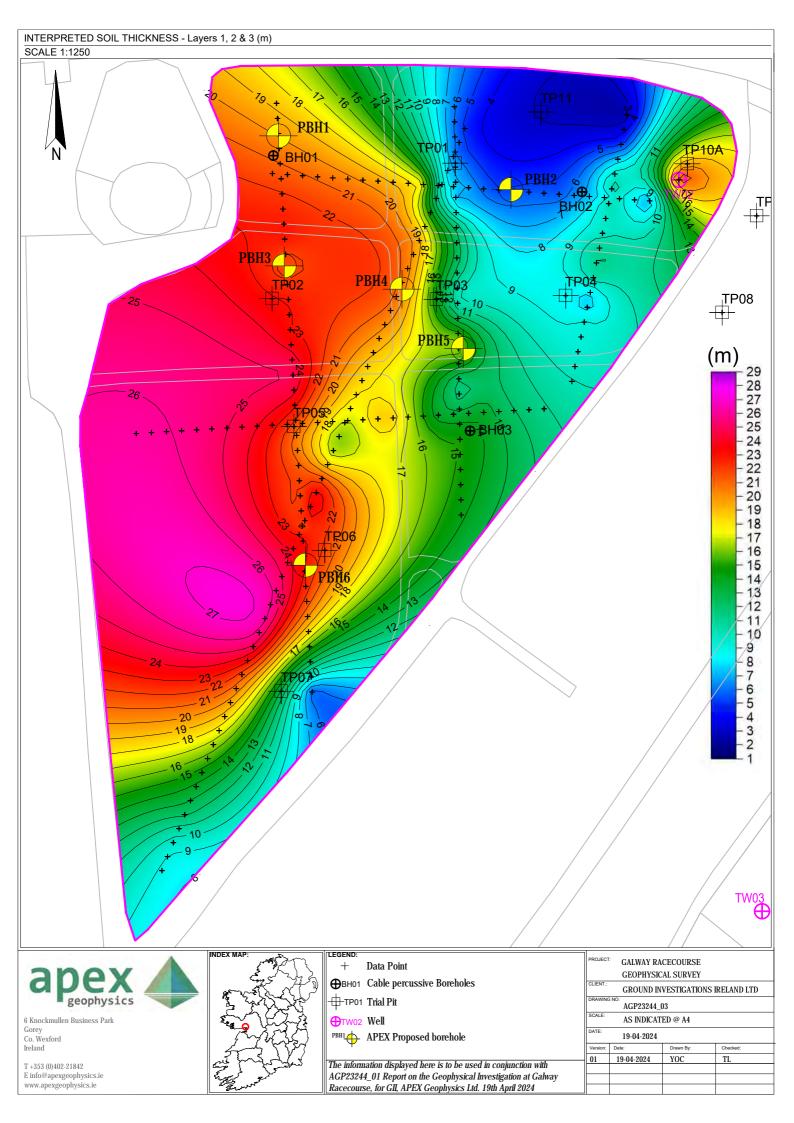
- Open fractures, faults and other planes of weakness of any kind
- Weathering
- Brittleness and crystalline nature
- High degree of stratification or lamination
- Large grain size
- Low compressive strength

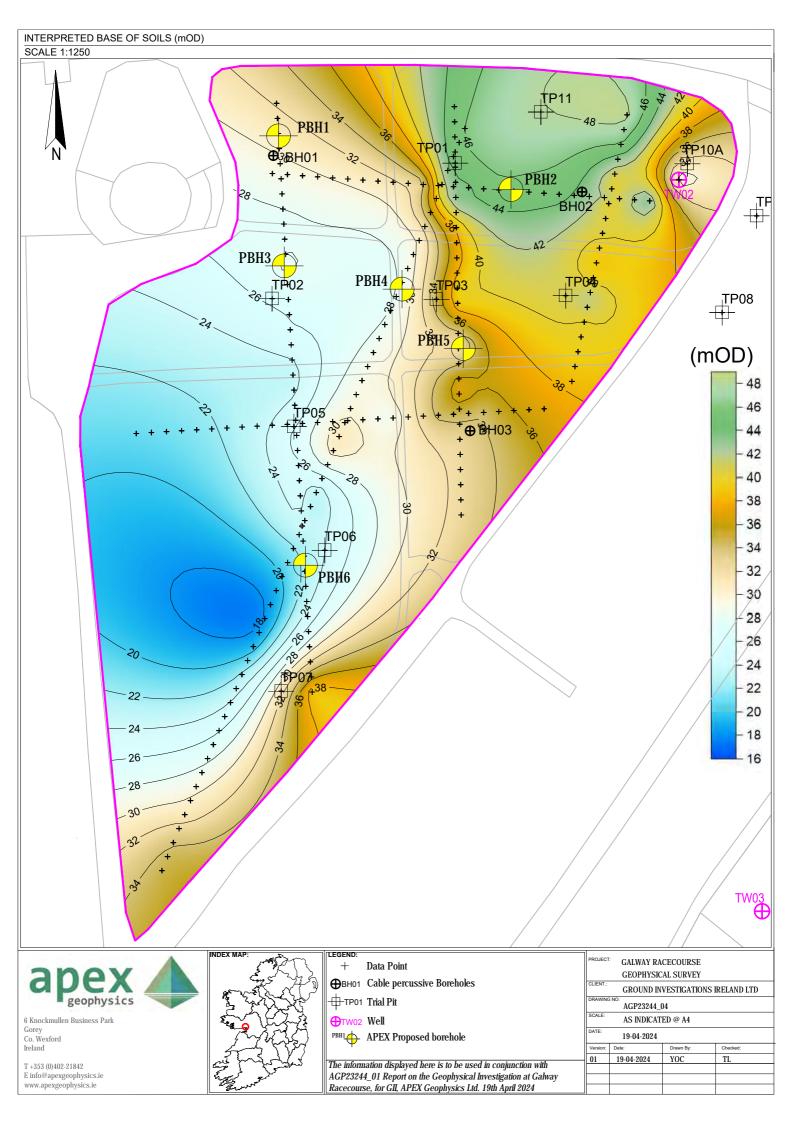
Weaver (1975) presented a comprehensive rippability rating chart (Fig.1) in which the p-wave velocity value and the relevant geological factors could be entered and assigned appropriate weightings. The total weighted index was found to correlate very well with actual rippability.

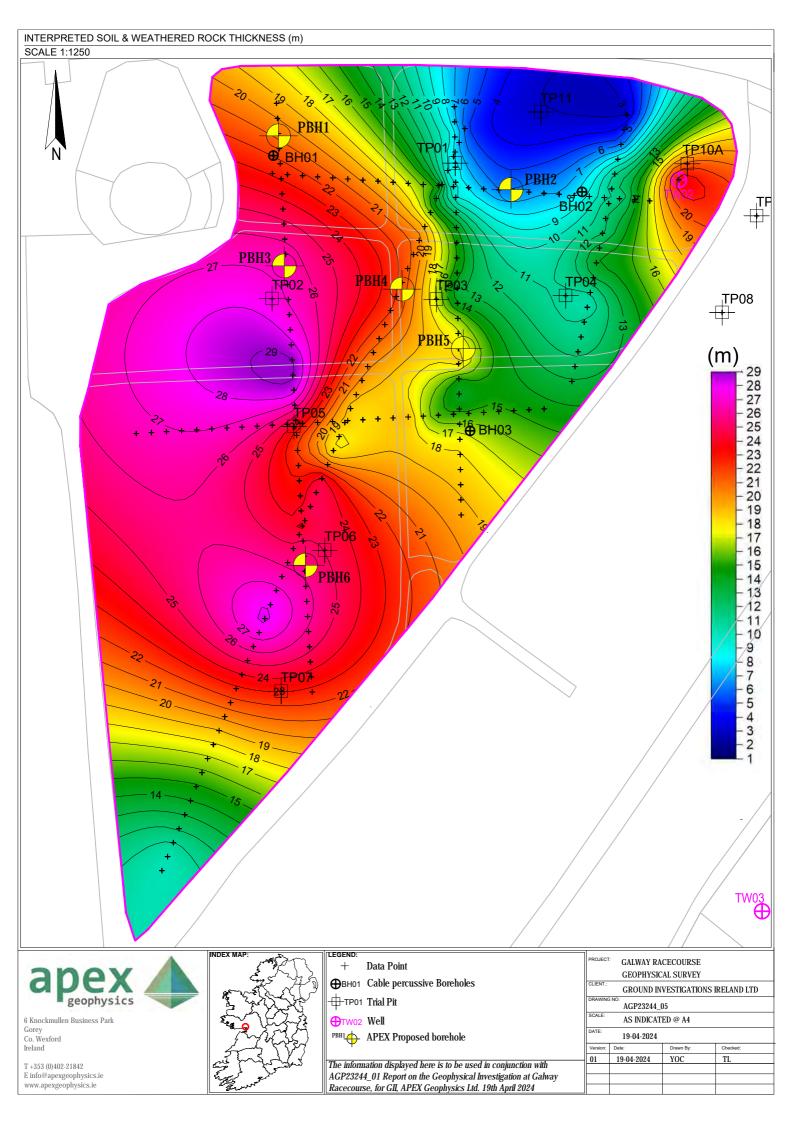
Rock class	1	11		IV	V
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
Seismic velocity					
(m/s)	>2150	2150-1850	1850-1500	1500-1200	1200-450
Rating	26	24	20	12	5
Rock hardness	Extremely hard rock	Very hard rock	Hard rock	Soft rock	Very soft rock
Rating	10	5	2	1	0
Rock weathering	Unweathered	Slightly weathered	Weathered	Highly weathered	Completely weathered
Rating	9	7	5	3	1
Joint spacing (mm)	>3000	3000-1000	1000-300	300-50	<50
Rating	30	25	20	10	5
Joint continuity	Non continuous	Slightly	Continuous-	Continuous-	Continuous-
		continuous	no gouge	some gouge	with gouge
Rating	5	5	3	0	0
Joint gouge	No separation	Slight separation	Separation <1mm	Gouge <5mm	Gouge >5mm
Rating	5	5	4	3	1
Strike and dip orientation	Very unfavourable	Unfavourable	Slightly unfavourable	Favourable	Very favourable
Rating	15	13	10	5	3
Total rating	100-90	90-70*	70-50	50-25	<25
Rippability	Blasting	Extremely hard	Very hard	Hard ripping	Easy ripping
assessment		ripping and blasting	ripping		
Tractor horsepower		770/385	385/270	270/180	180
Tractor kilowatts		575/290	290/200	200/135	135

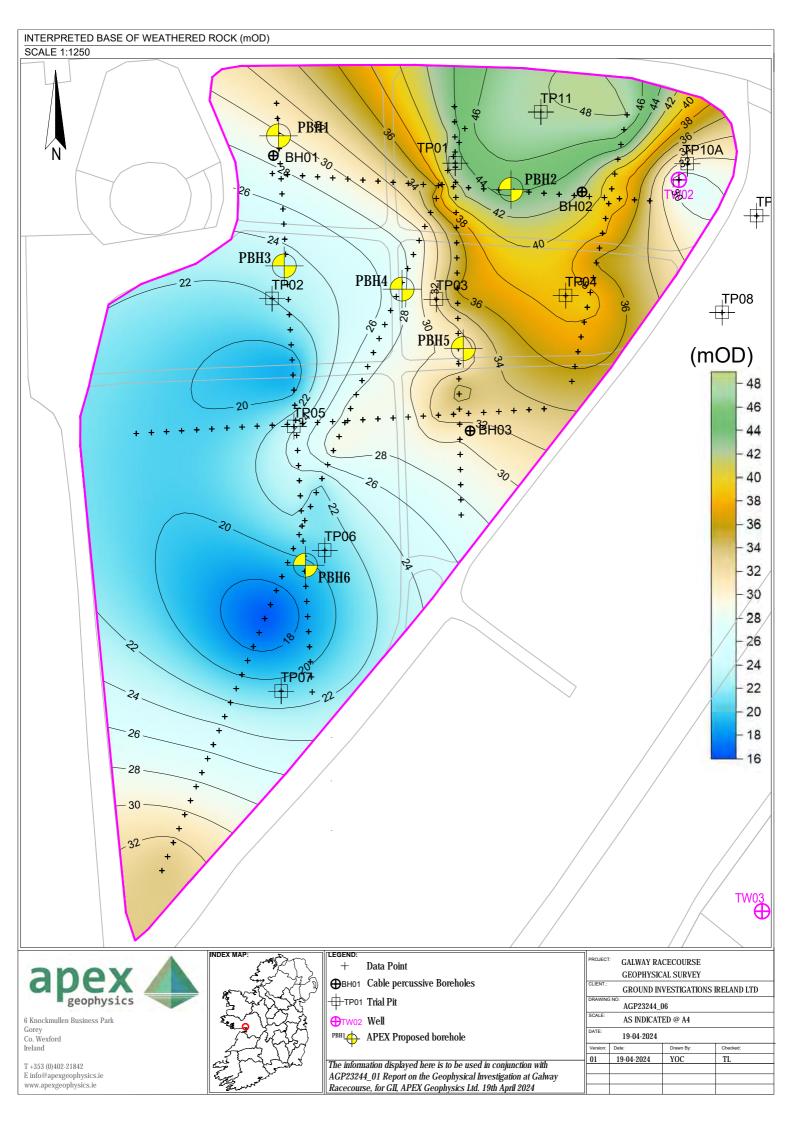

Fig.1 Rippability Rating Chart

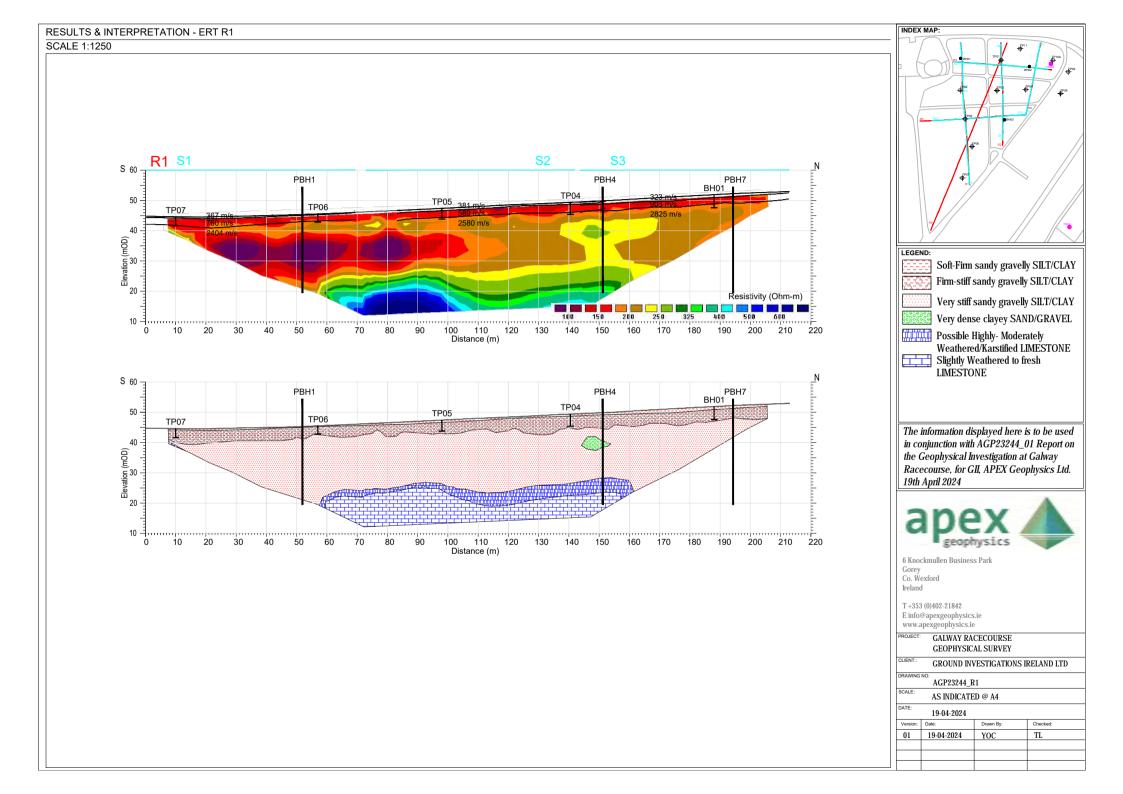


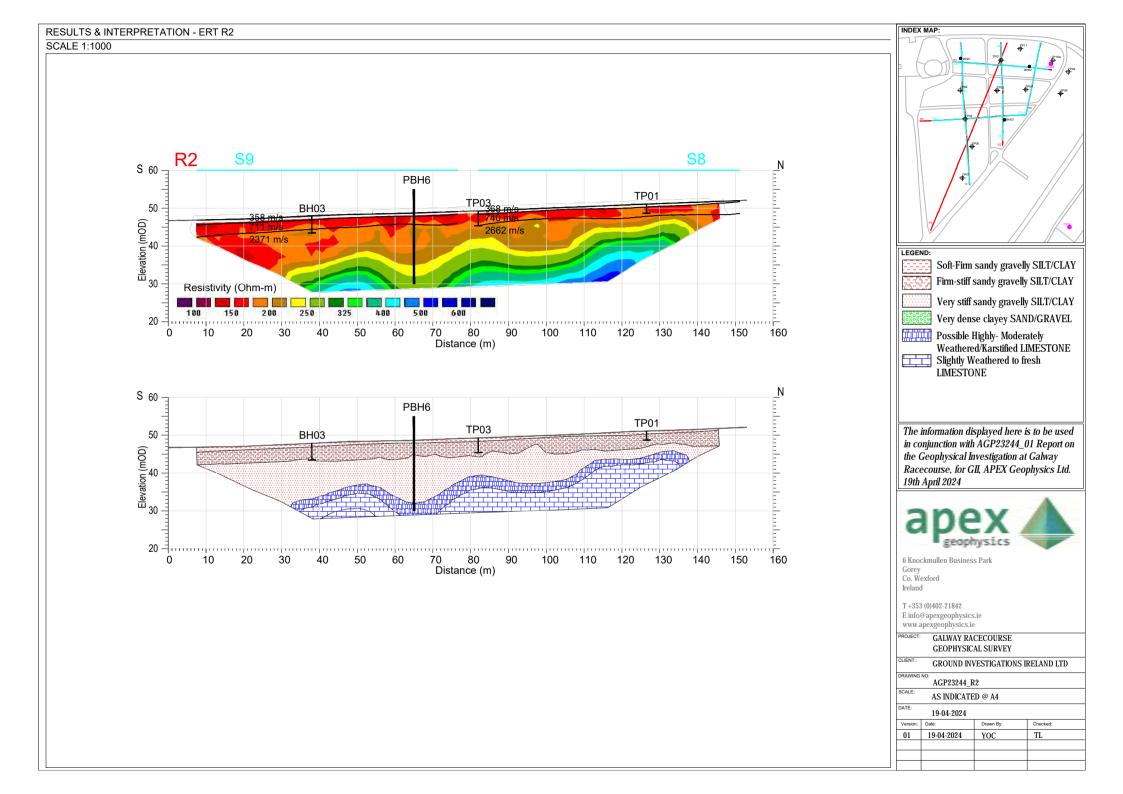

APPENDIX C: DRAWINGS

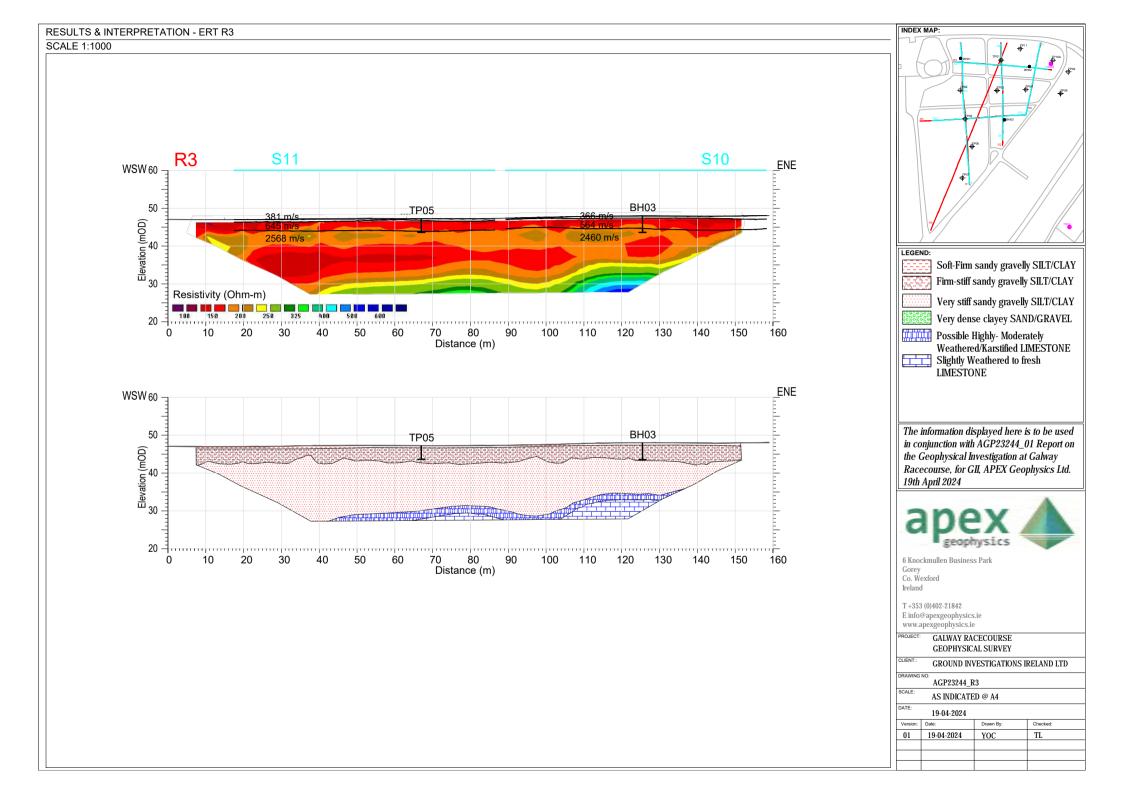

The information derived from the geophysical investigation is presented in the following drawings:

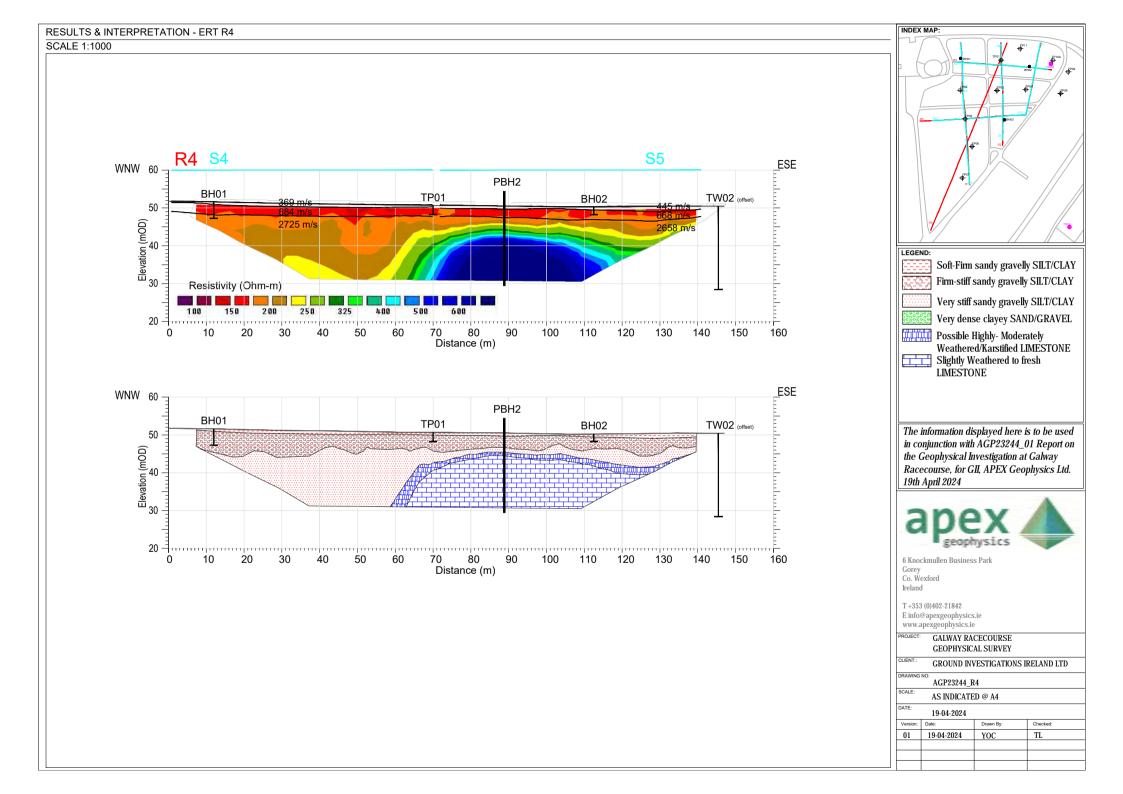

AGP23244_01	Geophysical Locations	1:1250	@ A3
AGP23244_02	Interpreted Thickness of Layers 1 & 2 (m)	1:1250	@ A3
AGP23244_03	Interpreted Soil Thickness - Layers 1, 2 & 3 (m)	1:1250	@ A3
AGP23244_04	Interpreted Base of Soils (mOD)	1:1250	@ A3
AGP23244_05	Interpreted Soil & Weathered Rock Thickness (m)	1:1250	@ A3
AGP23244_06	Interpreted Base of Weathered Rock (mOD)	1:1250	@ A3
AGP23244_R1	Results and Interpretation - ERT R1	1:1250	@ A4
AGP23244_R2	Results and Interpretation - ERT R2	1:1000	@ A4
AGP23244_R3	Results and Interpretation - ERT R3	1:1000	@ A4
AGP23244_R4	Results and Interpretation - ERT R4	1:1000	@ A4
AGP23244_R5	Results and Interpretation - ERT R5	1:1500	@ A4
AGP23244_R6	Results and Interpretation - ERT R6	1:1000	@ A4

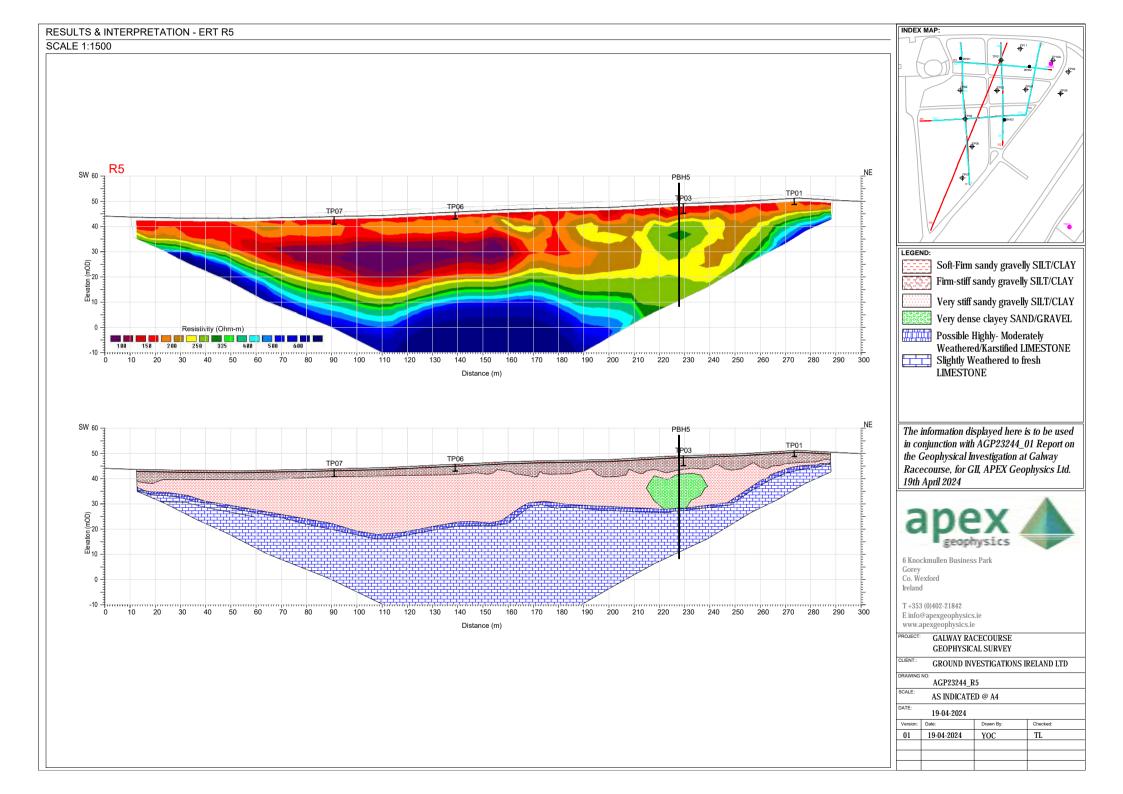


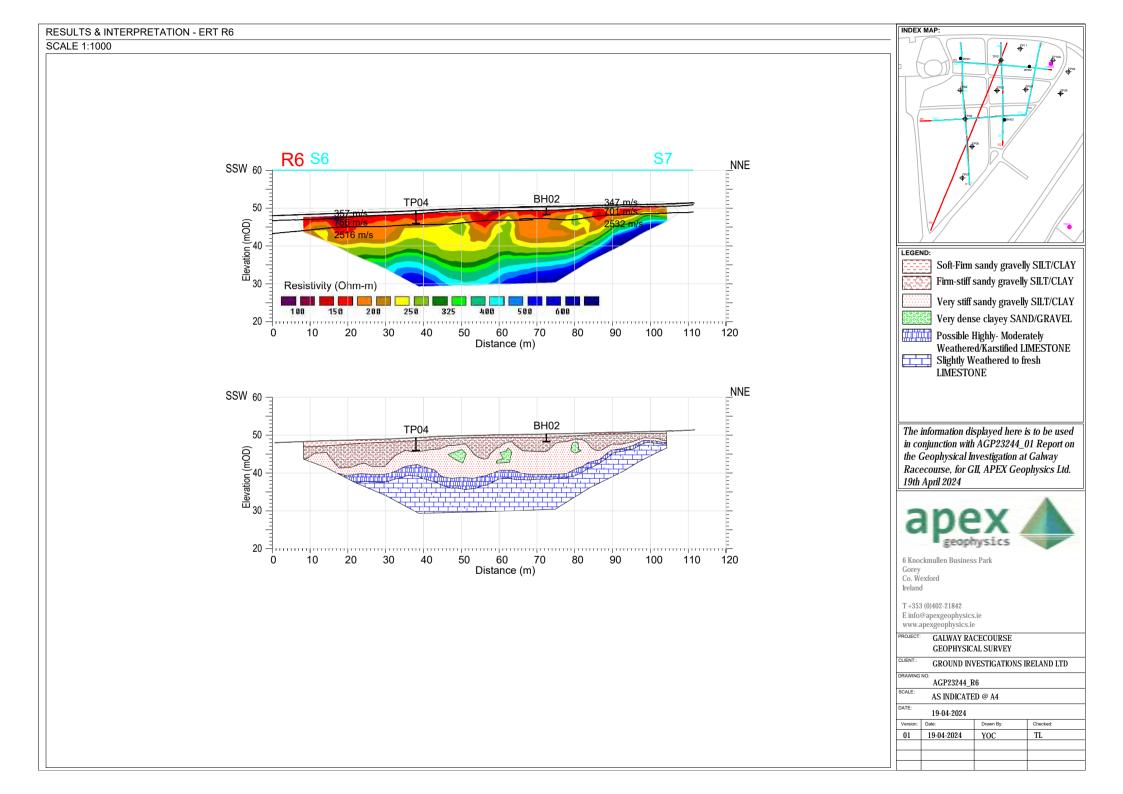












Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

Ground Investigations Ireland

Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway

Galway County Council

Ground Investigation Report

April 2024

Directors: Fergal McNamara (MD), Conor Finnerty, Aisling McDonnell, Barry Sexton, Stephen Kealy & Michael Sutton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway
Engineer	ARUP
Client	Galway County Council
Project No	13521-01-24
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Interim	A Molloy	S Graydon	S Kealy	Dublin	25 April 2024

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble1
2.0	Overview1
2.1.	Background1
2.2.	Purpose and Scope1
3.0	Subsurface Exploration1
3.1.	General1
3.2.	Trial Pits2
3.1.	Dynamic Probing (DPSH)2
3.2.	Cable Percussion Boreholes2
3.3.	Water Trial Well Drilling3
3.4.	Geophysical Survey3
3.5.	Surveying3
3.6.	Laboratory Testing (Part-Pending)4
4.0	Ground Conditions4
4.1.	General4
4.2.	Groundwater5

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Dynamic Probe Records
Appendix 4	Borehole Records
Appendix 5	Laboratory Testing (Part-Pending)
Appendix 6	Groundwater Monitoring

1.0 Preamble

On the instructions of ARUP Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between February and March at the site of the proposed redevelopment at Galway Racecourse in Ballybrit, Co. Galway.

2.0 Overview

2.1. Background

It is proposed to redevelop the existing horse stables and associated grounds. As part of the works the associated services, access roads and car parking will also be redeveloped. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant. The site is bounded by Galway Racecourse to the north and west side. The current N6 bounds the site to the south and Briarhill Business Park bounds the site to the east.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 12 No. Trial Pits to a maximum depth of 4.0mBGL
- Carry out 8 No. Dynamic Probes to determine soil strength/density characteristics
- Carry out 3 No. Cable Percussion boreholes to a maximum depth of 4.40m BGL
- Carry out 3 No. Trial Wells to a maximum depth of 100m
- Carry out a 2D Resistivity and Seismic Geophysical Survey
- Installation of 3 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Factual Report

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using an 8T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by an Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.1. Dynamic Probing (DPSH)

The dynamic probe tests (DPSH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 63.5kg weight dropping 760mm and recorded in 100mm intervals monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated based on previous published information however the determination of the appropriate correlate strength should be completed with care and using experience with similar soil types. The dynamic probe logs are provided in Appendix 3 of this Report.

3.2. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the

consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 4 of this Report.

3.3. Water Trial Well Drilling

The trial well drilling was carried out by a Knebel truck mounted rig at the locations shown on the location plan in Appendix 1. The trial wells were completed from the ground surface,

The Knebel rig is truck mounted which allows for travel on pavement surfaces avoiding any damage to the surface. The Knebel drilling rig utilises a down the hole hammer system operated using a drilling hammer and a piston powered by compressed air. As the drill string rotates, the drilling hammer strikes down on the rock. The drill bit receives its striking power from a piston inside the hammer that is powered by compressed air.

This action along with the rotational movement of the drill string crushes the rock efficiently. Since the piston strikes directly on the bit, energy transfer takes place down the hole with minimum loss of energy, allowing drilling to greater depths.

The driving medium i.e. compressed air is also the flushing medium. The flushing medium (in some cases, water is also used) is pressed down through the drill pipes, down-the-hole hammer and the drill bit. It is then forced back out of the borehole along with the cuttings through the annular gap between the drill pipe and the borehole.

The Trial Well logs were provided to the consulting engineers on completion of the drilling.

3.4. Geophysical Survey

The geophysical survey consisted of Electrical Resistivity Tomography (ERT) and Seismic Refraction profiling. ERT surveying technique makes use of the Gradient resistivity array. The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. This method involves the use of electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

Seismic profiling measures the p-wave velocity (Vp) of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher Vp velocities while soft, loose or fractured materials have lower Vp velocities. Readings are taken using geophones connected via multi-core cable to a seismograph. The Report for the Geophysical survey is included under the cover of a separate report by Apex Geophysics.

3.5. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.6. Laboratory Testing (Part-Pending)

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the ARUP Suite D, E and F testing was carried out by Element Materials Technology Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer, Moisture Condition Value (MCV), 2.5kg Rammer Compaction and MCV 5-point compaction tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 5 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and generally comprised;

- Topsoil/Surfacing
- Made Ground
- Possible Made Ground
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.3m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil or from ground level and were present to a maximum depth of 0.90m BGL. These deposits were described generally as *Brown* slightly sandy gravelly Clay with fragments of timber, ceramic and glass fragments and low angular to subangular fine to coarse cobble content or a Grey angular to subangular fine to coarse Gravel Fill.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground to a maximum depth of 4.40m BGL and were described typically as *brownish greyish slightly sandy gravelly CLAY with medium angular to subangular cobble content. Gravels are angular to subangular fine to coarse.* The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm or firm to stiff below 1.5m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content, where noted on the exploratory hole logs.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH01, BH02 and BH03 to allow the equilibrium groundwater level to be determined. Data loggers were also installed in the boreholes and set to take hourly readings. The groundwater monitoring to date is included in Appendix 6 of this Report.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

Machine:8 ⁻ Method:Ti	⊺Excavator ial Pit	Dimensio (L x W x	ons D) 3.40m x 1.00m x 2.40m		Level (mOD) 51.04	Client Galway County Council		Job Numb 13521-01
		Location 5330	(dGPS) 695.1 E 727899.5 N	Dates 23	/02/2024	Project Contractor Ground Investigations Irel	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
	ES1 B1 D1 ES2 B2 D2 ES3 C			50.76 50.57 49.14 48.64	(0.28) 0.28 0.19) 0.47 (1.43) (1.43) (0.50) 2.40	TOPSOIL: Brown Clay wit MADE GROUND: Brown s fragments of red brick and subangular fine to coarse. Soft to firm brownish grey high subangular cobble ar angular to subangular fine Stiff brownish grey slightly subangular cobble and bo angular to subangular fine Complete at 2.40m Complete at 2.40m Remarks No groundwater encountere	slightly gravelly Clay with ceramic. Gravels are angular t slightly sandy gravelly CLAY with d boulder content. Gravels are to coarse. sandy gravelly CLAY with high ulder content. Gravels are to coarse.	

S		Grou	nd In		igatio ww.gii	ons Ire .ie	land	Ltd	Site Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway	Trial Pit Number TP02
Machine: Method :		vator	Dimens (L x W :		0m x 0.70	m x 4.00m		Level (mOD 49.42	Calway County Council	Job Number 13521-01-
			Locatio		S) E 727854.	7 N	Dates 22	2/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	San	nple / Tests	Water Depth (m)		Field Red	cords	Level (mOD)	Depth (m) (Thickness	Description	Legend
								 (0.28)	TOPSOIL: Brown Clay with rootlets and low subangular to subrounded cobble and boulder content.	
.40	ES1	1					49.14	(0.22)	Possible MADE GROUND: Brown slightly sandy silty gravelly Clay with low subangular to subrounded cobble content. Gravels are angular to subangular fine to coarse.	× <u> </u>
							10.02		Soft brownish grey slightly sandy slightly silty gravelly CLAY with low subangular cobble and boulder content. Gravels are angular to subangular fine to coarse.	× · · · · · · · · · · · · · · · · · · ·
.00 .00	B1 D1									× · · · · · · · · · · · · · · · · · · ·
								(1.80)		× · · · · · · · · · · · · · · · · · · ·
.50	ES2	2								× · · · · · · · · · · · · · · · · · · ·
										× · · · · · · · · · · · · · · · · · · ·
							47.12	2.30	Firm to stiff brownish grey slightly sandy gravelly CLAY with low to medium subangular cobble content. Gravel are	×
2.40 2.40 2.40	B2 D2 ES3	3						(0.50)	angular to subangular fine to coarse.	0 <u>0</u> 000
							46.62	2.80 	Very stiff brownish grey slightly sandy gravelly CLAY with low to medium subangular cobble content. Gravel are angular to subangular fine to coarse.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
								 (1.20)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.50 3.50 3.50	B3 D3 ES4	1								
				Slow in	gress(1) a	at 3.90m.	45.42	- - - 4.00		
Plan .			•		•		•		Remarks	
									Groundwater encountered at 3.40m BGL with slow ingress. Trial pit sidewalls spalling. Obstruction at 4.00m BGL, possible bedrock or boulders.	
			·	·		-		· ·		
			•		•					
		•	-	-	-			•	Scale (approx) Logged By Figure	No.
									1:25 AM 13521-0	01-24.T

Method :Trial Pit (Internet of Section Research of Section Rese	Ballybrit, Nu	chnical Investigations, Ballybrit	Galway Racecourse Geot Co. Galway			.ie	vw.gii	W					0
E33388.9 E 727854.5 N Cround Investigations Ineland Dright (m) Sample / Tests Kight (m) Field Records Logo (m) Description I 0.55 E51 I	Jok Nur 1352					m x 3.90m)m x 0.80		-	or			
Port Pinner Sample / Tests Wattyr (m) Field Records (m)00 (m) Conditions foland 0 Barry Pinner Field Records (m)00 (m) (m)00 (m) TOPSOIL: Brown Clay with notiets and low subangular to garweity Clay with new subangular to subangular to garweity Clay with ow subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subangular to garweity Clay with low subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subsorted to subangular to subangular to subangular to subangular cobbs and boulder content. Cravels are angular to subangular the to coarse. 1:00 B1 0:50 ES2 1:00 B1 0:10 ES2 3:00 B2 3:00	She		Project Contractor	2024	Dates 22/0		6)	on (dGP	Locati				
1.0 B1		nd	Ground Investigations Irela			5 N	727854	33688.9 E	5				
2.55 ES1 48.92 0.28 eutroinded cobble and boulder content. 0.55 ES1 48.70 0.50 1.10 B1 50 500 1.50 ES2 2.10 46.60 2.60 1.50 ES2 2.55 ES1	Lege	escription	D	Depth (m) ickness)	Level (mOD)	cords	Field Re	r 1	Wate Depti (m)	e / Tests	Sample	th)	Dept (m)
 i.0 B1 i.0 B2 i.0 B2	gular to	rootlets and low subangular to ulder content.	TOPSOIL: Brown Clay with subrounded cobble and bo	(0.28)									
55 ES1 Suff brownish grey sliphty sardy sliphty gravely CLAY are angular to subangular fine to coarse. 10 B1 C 10 D1 C 50 ES2 C 46.60 C 10 D2 50 ES2 46.60 C 46.20 Suff brownish grey sliphty sardy sliphty sliphty sardy sliphty sardy sliphty sliphty sardy sliphty sardy sliphty sliphty sardy sliphty sliphty sardy sliphty sardy sliphty slip	obble	ngular to subrounded cobble	gravelly Clay with low sub- content. Gravels are angu	(0.22)	-								
10 D1 50 ES2 46.60 2.60 50 Stiff brownish grey slightly sandy slightly slilly gravelly CLAY with low subangular cobble and boulder content. Gravels are angular to subangular to subangular fine to coarse. 10 B2 10 B2 50 ES3 45.30 3.90 Complete at 3.90m Plan . . . Plan . .	y CLAY ravels	sandy slightly silty gravelly CLA and boulder content. Gravels ine to coarse.	Soft brownish grey slightly with low subangular cobb								ES1		.55
10 B2 50 ES3 10 D2 50 ES3 210 Stiff brownish grey slightly sandy slightly slity gravelly CLAY with needium angular to subangular to subang											B1 D1		
10 B2 10 B2 10 B2 10 D2 50 ES3 10 B2 10 D2 10 D3 10 D2 10 D3 10 D3 10 D3 10 D4 10 D4 10 D4 10 D4 <td></td> <td></td> <td></td> <td>(2.10)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ES2</td> <td></td> <td>.50</td>				(2.10)							ES2		.50
10 B2 10 B2 10 B2 10 D2 .50 ES3 45.30 3.90 Complete at 3.90m Plan . . .													
10 B2 10 D2 .50 ES3 45.30 -	Illy CLAY x	and boulder content. Gravels	with low subangular cobbl		46.60								
50 ES3 45.30 45.30 Complete at 3.90 Complete at 3.90 Plan	م angular د م رق are د م رق د م رق د م رق د م رق د م رق د م رق	oulder content. Gravels are	to subangular cobble and	3.00	46.20						B2 D2		.10 .10
Plan Complete at 3.90m Plan Remarks No groundwater encountered. Trial pit sidewalls spalling.	0 0 0 0 0 0 0 0 0 0 0 0 0 0			(0.90)							ES3		.50
No groundwater encountered. Trial pit sidewalls spalling.	0. 0. 0. 0.		Complete at 3.90m	3.90	45.30								
Trial pit sidewalls spalling.	I		Remarks	. F				•				•	Plan
	Jer.		Trial pit sidewalls spalling.										
							•						
						•						·	
Scale (approx) Logged By Figure	Figure No.	Logged By Fig	scale (approx)		•	·		•		•	·	•	

	Grou	nd In		gations w.gii.ie	Irela	and I	_td	Site Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway	Trial Pit Number TP04
lachine : 8 ⁻ lethod :Tri	Г Excavator al Pit	Dimensi (L x W x		m x 1.00m x 3.	.40m		Level (mOD) 19.48	Client Galway County Council	Job Numbe 13521-01-
			n (dGPS) 3731.6 E) 727855.7 N	D	Dates 22	/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Records	(Level (mOD)	Depth (m) (Thickness)	Description	Legend
							(0.28)	TOPSOIL: Brown slightly gravelly Clay with rootlets.	
						49.20	0.28	Possible MADE GROUND: Brown slightly sandy silty Clay with low subangular to subrounded cobble content. (Soft to firm).	× <u>· · · ·</u> · ·
50	ES1						(0.47) 		× <u>· · · ·</u> ·
						48.73	0.75	Soft to firm brownish grey slightly silty sandy gravelly CLAY with medium subangular to subrounded cobble content.	× · · · · · · · · · · · · · · · · · · ·
20	R1						- 		× • • • • • • • • • • • • • • • • • • •
20 20	B1 D1						(1.25)		× • • • • • • • • • • • • • • • • • • •
									*× ***********************************
							-		* <u>×</u> ••••ו•
						47.48	2.00	Very stiff brownish grey sandy very gravelly CLAY with medium subangular cobble content. Gravels are angular to subangular fine to coarse.	0 <u>.0</u> 00
20 20 20	B2 D2 ES2						-		0 <u>.0</u> 0 0 <u>.0</u> 0
							(1.10)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
							- 		0 <u>0</u> 00
						46.38	 		
20 20 20	B3 D3 ES3					+0.00		Complete at 3.40m	
20	ES3						- 		
							- - -		
lan .								Remarks No groundwater encountered.	
								Trial pit stable. Obstruction at 3.40m BGL, possible bedrock or boulder.	
								Scale (approx) Logged By Figur	e No.
									-01-24.T

Machine : 01 Excavalor Method : Thai Pt. Dimensions (1, 4, W, 6) 0, 800m, x 3, 00m S33641 & E 727812.4 N Cround Level (m00) 47.27 Client Galaxy Council (advanced council (a	S	Grou	und In		igatio ww.gii	ons Ire .ie	eland	Ltd	Site Galway Racecourse Geot Co. Galway	echnical Investigations, Bally	orit, TP0		
Image: stand start S33841.8 E 727812.4 N Carcund Investigations Ireland Deptin Sample / Tests View model Field Records /6700 / 6700					0m x 0.90)m x 3.60m					Job Numb 13521-0		
1.40 ES1 47.02 0.25 TOPSOL: Brown slightly gravitly Clay with nodels and magnets of old clay pipe. 1.40 ES1 46.72 0.25 MADE GROUND: Brown slightly gravitly Clay with nodels and gravelity clay with nodels and gravelit fine to coarse.					-	.4 N		2/02/2024	-	and	Sheet 1/1		
1.40 ES1 47.02 0.25 Insgments of old objec. 1.40 ES1 46.72 0.55 MADE GROUND: Brownish grey slightly sandy gravelly CLAY with low to medium angular to subangular fine to coarse. 1.40 B1 1.45 1.45 1.46 1.60 ES2 45.27 2.00 Firm brownish grey slightly sandy gravelly CLAY with low to medium angular to subangular fine to coarse. 1.60 ES2 45.27 2.00 Firm brownish grey slightly sandy gravelly CLAY with low to medium subangular cobbe and boulder content. Gravels are angular to subangular fine to coarse. 1.60 ES2 45.27 2.00 1.60 ES2 45.27 2.00 1.60 ES2 45.27 2.00 1.60 ES2 44.37 2.90 1.60 ES3 Slow ingress(1) at 3.60m. Slow ingress(1) at 3.60m. 1.60 ES4 Slow ingress(1) at 3.60m. Slow ingress(1) at 3.60m.	Depth (m)	Sample / Tests	Water Depth (m)		Field Re	cords	Level (mOD)	Depth (m) (Thickness)	D	Description		Description	
40 ES1 60.9 ES1 60.9 61.72 0.30 46.72 0.40 60.9 61.72 0.40 10.90 10 B1 10								(0.25)	TOPSOIL: Brown slightly of fragments of old clay pipe	gravlly Clay with rootlets and			
10 B1 10 D1 60 ES2 60 ES3 60 ES4 7 2.00 60 ES3 60 ES4 7 3.00 60 ES4 80 B3 80 ES4 80	.40	ES1					47.02	-	MADE GROUND: Brown s Clay with fragments of rec	slightly sandy slightly gravelly l brick.			
.10 D1 (1.45) .60 ES2 45.27 2.00 .60 ES2 45.27 2.00 .60 B2 (0.90) Firm brownish grey slightly sandy gravelly CLAY with low to medium subangular coble and boulder content. Gravels are angular to subangular the subangular to subangular the coarse. .60 B2 (0.90) Stiff brownish grey slightly sandy gravelly CLAY with low to medium subangular coble and boulder content. Gravels are angular to subangular the subangular coble and boulder content. Gravels are angular to subangular coble and boulder content. Gravels are angular to subangular coble and boulder content. Gravels are angular to subangular coble and boulder content. Gravels are angular to subangular coble and boulder content. Gravels are angular to subangular coble and boulder content. Gravels are angular to subangular the coarse. .60 B3 Slow ingress(1) at 3.60m. 43.67 3.60 Plan 60 B3 Slow ingress(1) at 3.60m. 60 B3 Slow ingress(1) at 3.60m. 60 B3 Slow ingress(1) at 3.60m. 60 B3 . <							46.72	0.55	low to medium angular to	subangular cobble content.	th		
.60 B2 .60 B2 .60 B2 .60 ES3 .60 ES3 .60 B3 .60 B3 .60 B3 .60 ES4 .60 B3 .60 ES4 .60 B3 .60 B3 .60 ES4 .60 B3 .60 B3 .60 ES4 .60 B3 .60 ES4 .60 B3 .60 B3 .60 ES4 .60 B3 .60 ES4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> (1.45) </td> <td></td> <td></td> <td></td>								 (1.45) 					
1:60 B2 1:60 B2 1:60 B2 1:60 ES3 1:60 B3 1:60 ES4 Plan Image: Completent and the collage and the colage and the colage and the colage and the colage and the	.60	ES2					45.27	2.00	medium subangular cobbl	e and boulder content. Grave	w to ls		
60 B3 Slow ingress(1) at 3.60m. 43.67 - 2.90 Stiff brownish grey slightly sandy gravelly CLAY with low to medium subangular cobble and boulder content. Gravels are angular to subangular fine to coarse. .60 B3 Slow ingress(1) at 3.60m. 43.67 - 3.60 .60 ES4 Slow ingress(1) at 3.60m. 43.67 - 3.60 .60 ES4 Slow ingress(1) at 3.60m. - - Complete at 3.60m .60 ES4 Slow ingress(1) at 3.60m. - - - .60 ES4 Slow ingress(1) at 3.60m. - - - .60 ES4 Slow ingress(1) at 3.60m. - - - .60 D3 - - - - .60 ES4 Slow ingress(1) at 3.60m. - - - .60 D3 - - - - - .60 ES4 Slow ingress. - - - - - .60 D3 - - - - - - - .60 <td>.60</td> <td>D2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> (0.90) </td> <td>are angular to subangular</td> <td>fine to coarse.</td> <td><u>পারাধারারারার</u> আরারারারারারা</td>	.60	D2						 (0.90) 	are angular to subangular	fine to coarse.	<u>পারাধারারারার</u> আরারারারারারা		
.60 B3 .60 B4 .60 B5 .60 B4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>44.37</td><td>-</td><td>medium subangular cobbl</td><td>e and boulder content. Grave</td><td>v to</td></td<>							44.37	-	medium subangular cobbl	e and boulder content. Grave	v to		
.60 B3 D3 Slow ingress(1) at 3.60m. Complete at 3.60m .60 ES4 Slow ingress(1) at 3.60m. Remarks Plan							43.97	-	low to medium subangular	r cobble and boulder content.	h <u>00</u> h <u>00</u>		
Groundwater encountered at 2.60m BGL with slow ingress. Trial pit sidewalls spalling and collapse at 3.60m BGL. Trial pit terminated due to obstruction at 3.60m BGL, possible b	.60	D3		Slow in	gress(1)	at 3.60m.	43.67	3.60	Complete at 3.60m				
Trial pit sidewalls spalling and collapse at 3.60m BGL. Trial pit terminated due to obstruction at 3.60m BGL, possible b	Plan .												
							-		Trial pit sidewalls spalling an Trial pit terminated due to ol	nd collapse at 3.60m BGL. ostruction at 3.60m BGL, pos			
· · · · · · · · · ·													
						·	•	· ·					
		· ·	•	•	•		• ·			1			
	•		•	•	•	·	-				Figure No.		

Machine	Cround Investiga WWW.			eland	Ltd	Site Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway	Trial Pi Numbe
Method :Tr			ons D) 3.30m x 0.90m x 2.70n	n	Level (mOD 45.53	Client Galway County Council	Job Numbe 13521-01
		Location 533	i (dGPS) 652 E 727771.5 N	Dates 23	/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend
					 (0.30)	TOPSOIL: Brown slightly sandy slightly gravelly Clay with rootlets. Gravels are angular to subangular fine to coarse.	
				45.23 45.08	(0.15)	MADE GROUND: Brown slightly sandy slightly gravelly Clay with fragments of ceramic. Gravels are angular to subangular fine to coarse.	
.50	ES1				- - - - -	Very soft brownish grey slightly sandy gravelly CLAY with low subangular cobble and boulder content. Gravels are angular to subangular fine to coarse.	
.00 .00	B1 D1				 (1.55)		
.50	ES2				- - - - - - - -		
				43.53	2.00 	Stiff brownish grey slightly sandy gravelly CLAY with medium subangular cobble content. Gravels are angular to subangular fine to coarse.	
.40 .40 .40	B2 D2 ES3			42.83		Complete at 2.70m	6 - 2 - 4 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
					<u> </u>	Remarks	
Plan .	· ·				• •		
Plan .	· ·	· ·	· · ·		•	No groundwater encountered. Trial pit stable. Trial pit terminated due to obstruction at 2.70m BGL, possible boulders.	bedrock o
Plan	· · ·	· · ·	· · ·	· ·	· ·	Trial pit terminated due to obstruction at 2.70m BGL, possible	bedrock o
Plan .	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · ·	•	Trial pit terminated due to obstruction at 2.70m BGL, possible	bedrock c
Plan .	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · ·	· · ·		Trial pit terminated due to obstruction at 2.70m BGL, possible boulders.	bedrock

S	Grou	nd In		ations Ir .gii.ie	eland	Ltd	Site Galway Racecourse Geotechnical Investigations, Ballybrit Co. Galway	Trial Pit Numbe
Nachine : 87	Г Excavator al Pit	Dimensi (L x W >	ions x D) 3.60m >	(0.80m x 3.00m		Level (mOD) 44.11	Client Galway County Council	Job Numbe 13521-01-
			n (dGPS) 3637.6 E 72	7724.9 N	Dates 26	6/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fiel	d Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.30)	TOPSOIL: Brown slightly gravelly Clay with cermaic fragments and medium angular to subangular cobble content.	
					43.81	- 	Possible MADE GROUND: Brown slightly sandy gravelly Clay. Gravels are angular to subangular fine to coarse. (Soft to firm).	· · · · · · · · · · · · · · · · · · ·
.50	ES1					(0.40)		······································
					43.41	- 0.70 	Soft brown slightly sandy gravelly CLAY with medium subangular cobble content. Gravels are angular to subangular fine to coarse.	0 <u>0</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 00	B1 D1							2000 000 000 000 000 000 000 000
50	ES2					(1.20) 		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50	E32					- - - -		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00	B2 D2				42.21	1.90 (0.30)	Firm brown slightly sandy gravelly CLAY with medium angular to subangular cobble content. Gravels are angula to subangular fine to coarse.	· <u> </u>
00	D2				41.91	2.20	Stiff to very stiff brown slightly sandy gravelly CLAY with medium angular to subangular cobble content. Gravels ar angular to subangular fine to coarse.	
50	ES3					 (0.80) 		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00	D2				41.11	3.00		
.00 .00	B3 D3						Complete at 3.00m	
Plan .		•			-		Remarks	
							No groundwater encountered. Trial pit stable. Obstruction at 3.00m BGL, possible rock or boulder. Trial pit backfilled upon completion.	
			•			•••		
•		•			-	· ·	cale (approx) Logged By Fig	jure No.
							1:25 AM 13	521-01-24.T

Method :Tr	T Excavator ial Pit	Dimensio (L x W x	WWW.gii. ons D) 3.70m x 1.10r			Level (mOD) 49.42	Co. Galway Client Galway County Council	Job Numbe 13521-01
		Location	ı (dGPS) 783.3 E 727850.1	1 N	Dates 23	/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness	Description	Legend
					49.34	(Q.08) 	MADE GROUND: Grey angular to subangular fine to	
						(0.47)	MADE GROUND: Brown sandy gravelly Clay high subangular cobble content.	
45	ES1				48.87		Firm greyish brown slightly silty slightly sandy gravelly CLAY with medium subangular cobble content. Gravels are angular to subangular fine to coarse.	
10 10	B1 D1					 (1.35)		
40	ES2					- 		x 0 x 0 x 0 x
10 10	B2 D2				47.52	1.90 (0.50)	Soft light greyish brown slightly silty slightly sandy gravelly CLAY with medium subangular cobble content. Gravels are angular to subangular fine to coarse.	× • • • • • • • • • • • • • • • • • • •
.30 .40 .40	ES3 B3 D3				47.02	- 2.40	Complete at 2.40m	x <u>e</u> x
'lan .		•					Remarks	
							No groundwater encountered. Trial pit sidewalls spalling and collapsing below 2.10m BGL. Trial pit terminated due to obstruction at 2.40m BGL, possible boulders. PID test carried out at 0.45m BGL.	e bedrock o
•		•	· ·		· ·			

	Ground Investigations I www.gii.ie			Ireland	Ltd	Galway Racecourse Geotechnical Investigations, Ballybri Co. Galway	t, TP0
Machine:87 Method:Tri			ons : D) 3.40m x 1.20m x 3.4		l Level (mOD) 49.93	Client Galway County Council	Job Numbe 13521-01
		Location 533	ı (dGPS) 794.7 E 727882.1 N	Dates 2	3/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
				49.83	(0.10) - 0.10	MADE GROUND: Grey to brown slightly sandy angular to subangular fine to coarse Gravel Fill.	
25	ES1				- - - - (0.70)	MADE GROUND: Light brownish grey slightly sandy gravelly Clay with fragments of plastic and medium angul to subangular cobble and boulder content. Gravels are angular to subangular fine to coarse.	ar
				49.13	0.80	Possible MADE GROUND: Brown slightly sandy gravelly Clay with medium angular to subangular cobble content	<u></u>
00 00	B1 D1				(0.40)	and pockets of soft orange to brown slightly sandy gravel Clay. Gravels are angular to subangular fine to coarse. (Soft to firm).	y
				48.73	3 1.20	Soft to firm brownish greyish slightly sandy gravelly CLAY with medium angular to subangular cobble content. Grave are angular to subangular fine to coarse.	
50	ES2				- - -		0 0 0 0 0 0 0 0 0 0 0
							<u>6.04</u>
					- - -		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 25	B2 D2				(2.20)		
							0 0 0 0 0 0 0 0 0
90	B3				- - 		
90 90	D3 ES3						
				46.53	3 3.40	Complete at 3.40m	
'lan .						Remarks No groundwater encountered.	
	· ·				••••	Trial pit sidewalls spalling and collapsing below 3.00m BGI Trial pit terminated due to obstruction at 3.40m BGL, possib boulders. PID test carried out at 0.25m BGL.	 le bedrock o
					•••		
					•••		
·					· · ·	Scale (approx) Logged By Fi	gure No.
						1:25 AM 13	521-01-24.T

	T Excavator	Dimens (L x W 2	WWW.gii.ie ions x D) 3.70m x 0.80m x 0.90r		I Level (mOD) 51.05	Co. Galway Client Galway County Council		Job Numbe
/lethod :⊺ı	iai pit	Locatio	n (dGPS) 3769.8 E 727906.8 N	Dates	6/02/2024	Project Contractor Ground Investigations Irel	and	13521-01 Sheet 1/1
Depth (m)	Sample / Test	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
0.30	ES1			50.85		MADE GROUND: Grey ar coarse Gravel Fill. MADE GROUND: Brown s fragments of timber, cerm angular to subangular fine Gravels are angular to sub MADE GROUND: Grey ar coarse Gravel Fill. Underground service loo remarks. Complete at 0.90m	ngular to subangular fine to slightly sandy gravelly Clay w aic and glass fragments and l to coarse cobble content. bangular fine to coarse.	th ow
Plan .					· ·	Remarks No groundwater encountere Trial pit stable.		
					•••	PID test carried out at 0 30n	el and arisings upon completion n BGL. location of underground service ter black plastic pipe running ossible storm drain.	
•		•		•	•••	10-20 degrees east-west, p	ossible storm drain.	~PP: Unitately
•								
•	• •	•	• • •	•	•••			

	GIO		www.	itions Ire gii.ie			Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway	Numbe
Nachine:87 Nethod:Tri		Dimens (L x W)		0.85m x 2.95m		Level (mOD) 50.79	Client Galway County Council	Job Numbe 13521-01
			n (dGPS) 3771.8 E 727	899.3 N	Dates 26	/02/2024	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness	Description	Legend
					50.59	(0.20) 0.20 	MADE GROUND: Grey angular to subangular fine to coarse Gravel Fill. MADE GROUND: Brown slightly silty slightly gravelly Clay. Gravels are angular to subangular fine to coarse.	
).45	ES1				10.00	(0.60)		
.00 .00	B1 D1				49.99	0.80 	Soft to firm brown slightly sandy gravelly CLAY with low subangular cobble and boulder content. Gravels are angular to subangular fine to coarse.	
					49.29			
.50	ES2					- - - - - - -	Firm to stiff brown slightly sandy gravelly CLAY with medium angular to subangular cobble and boulder content. Gravels are angular to subangular fine to coarse.	
10 10	B2 D2					(1.45)		
2.50	ES3							
2.95 2.95	B3 D3				47.84	2.95 2.95 	Complete at 2.95m	
Plan .							Remarks No groundwater encountered.	
				·		-	Triaľ pit sidewalls spalling. Obstruction at 2.95m BGL, possible rock or boulder. Trial pit backfilled upon completion. PID test carried out at 0.45m BGL.	
•	· ·	•			· ·	•		

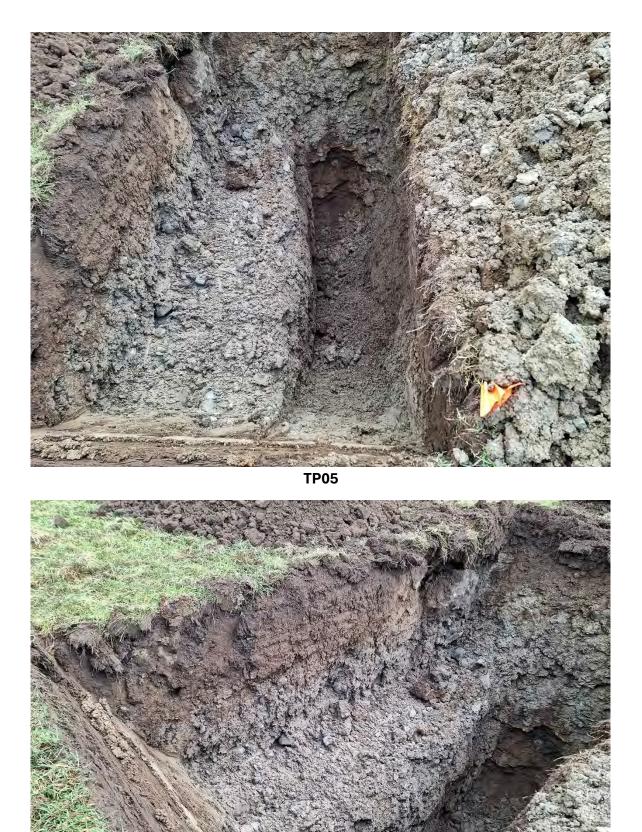
S	Gro	und In		jations Ir _{v.gii.ie}	eland	Ltd	Site Galway Racecourse Geote Co. Galway	echnical Investigations, Bally	brit,
Nachine : 87 Nethod :Tri	Г Excavator al Pit	Dimens (L x W		x 1.00m x 2.90n	n .	Level (mOD) 51.39	Client Galway County Council		Job Numbe 13521-01
			n (dGPS) 3723.4 E 7	27916.4 N	Dates 26	6/02/2024	Project Contractor Ground Investigations Irela	and	Sheet
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
).40	ES1				50.99 50.74	(0.25)	MADE GROUND: Brown s of plastic and low subangu angular to subangular fine Soft to firm brown slightly s	sandy gravelly CLAY with low e and boulder content. Grave	to
.00 .00	B1 D1					 (1.05) 			
1.50	ES2				49.69	 	Firm to stiff brown slightly medium angular to subang boulder content. Gravels a coarse.	sandy gravelly CLAY with gular cobble and low subangu are angular to subangular fine	ular 6 0 0 0 0 10 0 0 0 0
2.00 2.00 2.50	B2 D2 ES3					(1.10)			2000 000 000 000 000 000 000 000
2.90 2.90	B3 D3				48.59 48.49	\vdash (0.10)	Very stiff brown slightly sa angular to subangular cob to subangular fine to coars Complete at 2.90m	ndy gravelly CLAY with medii ble content. Gravels are ang se.	ular
Plan .		•	•				Remarks No groundwater encountere	d.	
				· ·			Trial pit stable.	ostruction at 2.90m BGL, pos	sible bedrock o
					• •				
		•		· ·					
							scale (approx)	Logged By	Figure No.
							1:25		13521-01-24.T

TP01

TP01

TP02

TP03


TP03

TP04

Trial Pit Photographs - Galway Racecourse, Ballybrit

TP07

Trial Pit Photographs - Galway Racecourse, Ballybrit

TP07

TP08

TP09

TP10

TP10A

Trial Pit Photographs - Galway Racecourse, Ballybrit

TP11

APPENDIX 3 – Dynamic Probe Records

S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site Galway Co. Galv	Racecours way	se Geoteo	hnical Inve	tigations	, Ballyt	orit,	Probe Numb	
Nethod Dynamic pro Fall height: Hammer We	obe DPSH 750mm eight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		.evel (mOD) 50.82		County Co	ouncil					Job Numb 13521-0	
	Sign: Solokg	Location	Dates		Engineer							Sheet 1/1	
	1	533694 E 727898 N		2/2024	Arup								
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3	6		for Depth I 2 15		1 t 21	24	27 3	30
0.00-0.10	0		50.82	0.00									T
).10-0.20).20-0.30	2 2 2								_				┢
).30-0.40).40-0.50				— 					_				╞
0.50-0.60	22		50.32	0.50									
).60-0.70).70-0.80	1												
).80-0.90).90-1.00	5			 									
.00-1.10	3		49.82	1.00									┢
.10-1.20 .20-1.30	3								_				╞
.30-1.40	22						_		_				
.50-1.60	3 2		49.32	— 1.50									
.60-1.70 .70-1.80	3			-									
.80-1.90	23												t
.90-2.00 .00-2.10	8 10		48.82	2.00		_			_				╞
.10-2.20	10								_				+
.30-2.40	16 19			- -									
.40-2.50 .50-2.60	20 25		48.32	2.50									
													t
									-				┢
			47.82	3.00					_				+
				—									
			47.32	3.50									T
				· 									t
									_				╞
			46.82	4.00					_				_
				- 									
				-									
			46.32	4.50									+
													╞
				 - 			_					<u> </u>	╞
			45.82	5.00									
Remarks Hand pit d Refusal at	ug to 1.20m BGL 2.60m BGL - 25 b	lows for 100mm	I		· · · · ·			I			Scale (approx)	Logge By	ed
											1:25	JI	1
											Figure 13521-0		_

	Gro	und Investigations www.gii.ie			Co. G	ay Raceco alway	ourse Geote	echnical I	nvesti	gations,	Ballybrit	.,	Probe Numb	
l ethod ynamic pro all height: ammer We	obe DPSH 750mm eight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		.evel (mOD) 49.27		ay County	Council						Job Numb 13521-0	
		Location 533635 E 727855 N	Dates 27/0	2/2024	Engine Arup	er							Sheet 1/1	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0	36	Blow: 9	s for Dep 12 1			t 21 24	4 2	27 (30
.00-0.10 .10-0.20 .20-0.30	0 2 2		49.27	0.00										+
.30-0.40 .40-0.50 .50-0.60 .60-0.70	2 2 2 4		48.77	0.50										
70-0.80 80-0.90 90-1.00 00-1.10 10-1.20	5 3 2 3 2		48.27	1.00										
20-1.30 30-1.40 40-1.50 50-1.60 60-1.70	2 2 2 2 2		47.77	 										
70-1.80 80-1.90 90-2.00 00-2.10 10-2.20	22223		47.27	2.00										
20-2.30 30-2.40 40-2.50 50-2.60 60-2.70	0 2 2 2 2 2 2 4 5 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		46.77	2.50										-
70-2.80 80-2.90 90-3.00 00-3.10 10-3.20 20-3.30	6 15 15 16 20 24 25		46.27	3.00										-
30-3.40	25		45.77	3.50										-
			45.27	4.00										_
			44.77	4.50										1
			44.27	5.00										-
			43.77	5.50										-
			43.27	6.00										-
			42.77	6.50										
			42.27	7.00										-
			41.77	7.50										
emarks			41.27	8.00							s	cale	Loga	- -
land pit d	lug to 1.20m BGL 3.40m BGL - 25 b	lows for 100mm										pprox)	Logge By	
												igure I	No. 1-24.DI	-

S	Gro	und Investigations www.gii.ie			Co. G	ay Race alway	ecourse	Geote	chnical	Investi	gations	, Ballyb	rit,	Probe Numb	
all height	obe DPSH 750mm ∋ight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		L evel (mOD) 49.13		ay Cour	nty Cou	ncil						Job Numb 13521-0	
		Location 533690 E 727855 N	Dates 27/0)2/2024	Engine Arup	er								Shee t 1/*	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0	3	6		for De				24 2	27 :	30
00-0.10	0 2		49.13	0.00			-								+
20-0.30 30-0.40 40-0.50	2 2 2 2														
50-0.60 50-0.70 70-0.80	2		48.63	0.50											_
80-0.90 90-1.00	2 2		40.40												-
0-1.10 0-1.20 0-1.30	221		48.13	1.00 											_
0-1.40 0-1.50 0-1.60	2 1 3		47.63	 											-
0-1.70 0-1.80 0-1.90	2 2 2 2														-
0-2.00 0-2.10	322		47.13	2.00											-
0-2.20 0-2.30 0-2.40	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-											
0-2.50 0-2.60 0-2.70	4 6 7		46.63	2.50											
0-2.80 0-2.90 0-3.00	8 9 9							_							-
0-3.10 0-3.20 0-3.30	12 14 16		46.13	3.00											-
0-3.40 0-3.50	14		45.00												-
0-3.60 0-3.70 0-3.80	17 15 17		45.63	3.50											-
0-3.90 0-4.00 0-4.10	17 17 18		45.13	4.00											-
0-4.20	25												-		-
			44.63	4.50											-
				-											
			44.13	5.00											-
				- - - -											
			43.63	5.50											_
															-
			43.13	6.00											
			42.63	 											_
															-
			42.13	7.00											-
				-											
			41.63	7.50											-
				-											
emarks land pit d	ug to 1.20m BGI		41.13	8.00				<u> </u>					Scale (approx)	Logg By	•
tefusal at	ug to 1.20m BGL : 4.20m BGL - 25 b	lows for 100mm											1:40	JC	
												ŀ	Figure		_
													13521-0	1-24.D	ı

S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site Galway Co. Galv	Racecours way	e Geoteo	chnical Inv	estigatio	ns, Ball <u>y</u>	ybrit,	Prob Num DPH	
Method Dynamic pro Fall height:	obe DPSH 750mm eight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		.evel (mOD) 49.37		County Co	uncil					Job Num 13521-	
	eight. 03.0kg	Location	Dates		Engineer							Shee	
		533731 E 727856 N	27/0	2/2024	Arup							1/	/1
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0 4	8		for Depth	Increm	ent 28	32	36	40
0.00-0.10	0		49.37	0.00					-			+	+
0.10-0.20 0.20-0.30	2			-									+
0.30-0.40	2 2												
0.40-0.50 0.50-0.60	3 2		48.87	0.50									
).60-0.70	2												1
0.70-0.80 0.80-0.90	32												+
0.90-1.00 1.00-1.10	2 2		48.37	1.00									+
1.10-1.20	2												
.20-1.30 .30-1.40	3 2			- -									
.40-1.50 .50-1.60	3 2		47.87	 									T
.60-1.70	3			- -									+
.70-1.80 .80-1.90	3 4			-									_
.90-2.00 2.00-2.10	47		47.37	2.00									
.10-2.20	11		47.07				1						
2.20-2.30 2.30-2.40	24 13			 - 									t
2.40-2.50	9		10.07	- - -									+
2.50-2.60 2.60-2.70	12 18		46.87	— 2.50 —									+
2.70-2.80 2.80-2.90	20 21												
2.90-3.00	24 35			—									
3.00-3.10	35		46.37	3.00									t
													+
				 									_
			45.87	3.50									
													t
			45.37	4.00									+
				 - 			_						+
				-									
			44.87	4.50									
				-									+
				- 									+
			44.37	5.00							_		
Remarks Hand pit d Refusal at	ug to 1.20m BGL 3.10m BGL - 25 b	lows for 100mm									Scale (approx) Logg By	jed
											1:25	J	11
											Figure	No.	

Dynamic pro Fall height: 7 Hammer We		Cone Dimensions	Ground L	_evel (mOD)	Co. G	,							Job	05
	bbe DPSH 750mm bight: 63.5kg	Diameter 50mm, Angle 90°		47.21		ay Count	ty Cour	cil					Numb 13521-0	
	ight. oo.okg		Dates	2/2024	Engine	er							Sheet	
		533643 E 727813 N		02/2024	Arup								.,	-
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0	3 6			or Depth 2 15	Increme 18	nt 21	24	27	30
0.00-0.10	0		47.21	0.00										F
).10-0.20).20-0.30	1			- 										╞
0.30-0.40	2											_		L
).40-0.50).50-0.60	22		46.71	0.50										
0.60-0.70	2													
).70-0.80).80-0.90	1			-										-
).90-1.00 .00-1.10	1 0		46.21	1.00										_
.10-1.20	0													
.20-1.30 .30-1.40	0 1			- -										
.40-1.50 .50-1.60	3		45.71	 										1
.60-1.70	2			- 										+
.70-1.80 .80-1.90	2			-								_		_
.90-2.00 2.00-2.10	1 3		45.21 -	- - - 2.00										
2.10-2.20	3		45.21	- 2.00										
2.20-2.30 2.30-2.40	4			-										
2.40-2.50	4			-										-
2.50-2.60 2.60-2.70	5		44.71	— 2.50 —										
2.70-2.80	3		-	- 										
2.80-2.90 2.90-3.00	3 5													
3.00-3.10	7		44.21	3.00										+
8.10-3.20 8.20-3.30	6			- -										-
3.30-3.40	11													
8.40-3.50 8.50-3.60	16 20		43.71	- - 3.50										
3.60-3.70	25													
				-										+
			43.21	4.00										-
				-										
				- 										
			42.71	4.50										+
				-										+
											_			_
			42.21	- 5.00										
Remarks Hand pit du Refusal at	ug to 1.20m BGL 3.70m BGL - 25 bl	lows for 100mm										Scale (approx)	Logg By	ed
												1:25	JC	;
												Figure		

S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site Galwa Co. Ga	y Raceo alway	course	Geoteo	chnical	Investi	gations,	Ballyb	rit,	Probe Numl	
Method Dynamic pro Fall height: Hammer We	obe DPSH 750mm eight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		.evel (mOD) 45.53		y Count	y Cour	ıcil						Job Numl 13521-(
	olgini oololig	Location 533651 E 727771 N	Dates	2/2024	Enginee Arup	er								Shee 1/	
Donth	Blown for	555051 E 727771 N			Апир			Player	for Do						
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0 3	3 6					rement 18		24	27	30
0.00-0.10	0		45.53	0.00											Ŧ
).10-0.20).20-0.30	1														+
).30-0.40	22			-											\perp
).40-0.50).50-0.60	1 2		45.03	0.50											
.60-0.70	2														t
).70-0.80).80-0.90	3 2														+
).90-1.00 .00-1.10	1		44.53	 1.00											\downarrow
.10-1.20	1			- 											
.20-1.30 .30-1.40	1 2			-											T
.40-1.50 .50-1.60	2		44.03	- - - 1.50											+
.60-1.70	2		44.03	- 1.50 											_
.70-1.80	2			-											
.80-1.90 .90-2.00	2														
.00-2.10	5		43.53	2.00											t
.10-2.20 .20-2.30	6														+
2.30-2.40	6			-											
.40-2.50 .50-2.60	6 5		43.03	2.50											
.60-2.70	10			 -											T
2.70-2.80 2.80-2.90	12 9														+
2.90-3.00 3.00-3.10	11 13		42.53	3.00											_
.10-3.20	13														
.20-3.30 .30-3.40	12 8			-											T
8.40-3.50 8.50-3.60	9 11		42.03												+
.60-3.70	6		42.00												_
.70-3.80 .80-3.90	9 13														
.90-4.00	14			- 											
.00-4.10	11		41.53	4.00											t
.20-4.30	17														+
.30-4.40	20 25												<u> </u>		\downarrow
. 10-7.00	20		41.03	4.50											
				-											1
				- 											+
			40.53	5.00								<u> </u>			
Remarks Hand pit d Refusal at	lug to 1.20m BGL t 4.50m BGL - 25 b	lows for 100mm										(Scale (approx)	Logg By	ed
												-	1:25 Figure	J(No.	2
													13521-0	1-24.D	P

S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site Galway Co. Ga	y Racecou Ilway	rse Geote	chnical Inv	estigatior	ıs, Bally	/brit,	Probe Numi	
Method Dynamic pr Fall height:	obe DPSH 750mm eight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		.evel (mOD) 44.05		y County (Council					Job Numl 13521-(
	eight. 00.0kg	Location	Dates		Enginee	r						Shee	
		533638 E 727725 N	27/0	2/2024	Arup							1/	1
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0 3	6		for Depth	Increme	e nt 21	24	27	30
0.00-0.10	0		44.05	0.00						+	+		ŧ
).10-0.20	1			-									\downarrow
).20-0.30).30-0.40	2 1			- -									
).40-0.50).50-0.60	2 1		43.55	0.50									T
.60-0.70	1												╈
).70-0.80).80-0.90	22												
).90-1.00 .00-1.10	2 2		43.05	 1.00									
.10-1.20	2			-									
.20-1.30 .30-1.40	2 2			-									t
.40-1.50	2		10.55	- - -									+
.50-1.60 .60-1.70	1		42.55	— 1.50 —									+
.70-1.80	2			-									
.80-1.90 .90-2.00	3			- 									
.00-2.10	3		42.05	2.00		_							t
.10-2.20 .20-2.30	8												+
.30-2.40	8			 			1						
40-2.50 50-2.60	11		41.55	2.50									
.60-2.70 .70-2.80	11			-									T
.80-2.90	12 15			-									+
.90-3.00 .00-3.10	13 13		41.05	3.00									+
.10-3.20	25												
				- -									
			40.55										t
				- 									+
													_
			40.05	- 									
				-									t
													+
			39.55	4.50							_		+
				- 									
				 - 									T
Remarks Hand pit c	ug to 1.20m BGL t 2.40m BGL - 25 b		39.05	5.00					_	_	Scale (approx)	Logg By	+ eo
Refusal a	t 2.40m BGL - 25 b	lows for 100mm									1:25	JC	
											Figure		_
											13521-0	1-24.D	P

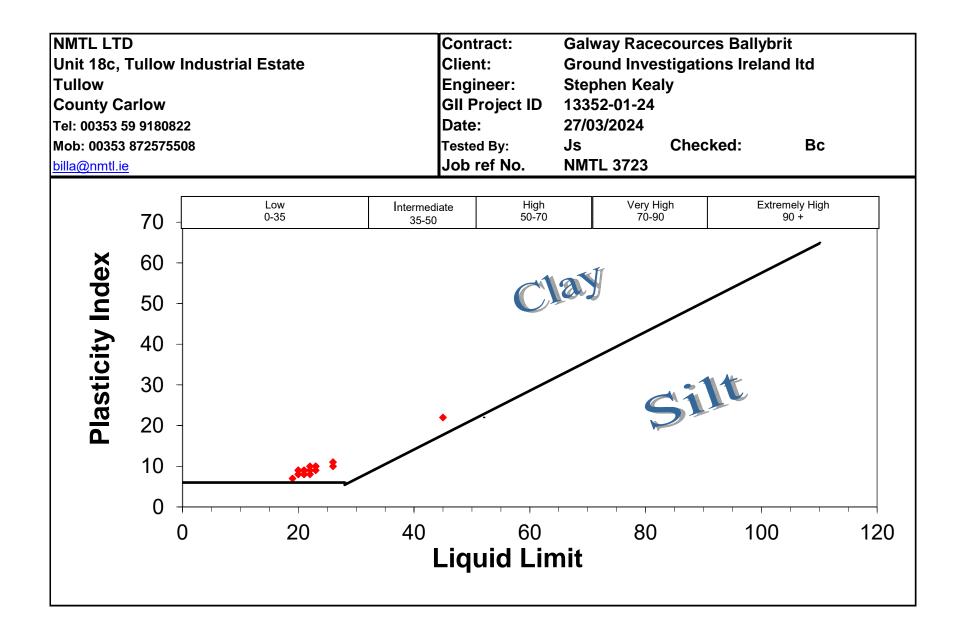
S	Gro	und Investigations www.gii.ie	Ireland	Ltd	Site Galwa Co. Ga	y Raceco alway	ourse Geote	chnical Inv	vestigatior	ns, Ballyb	rit,	Probe Numbe	
Method Dynamic pro Fall height: Hammer Wo	obe DPSH 750mm eight: 63.5kg	Cone Dimensions Diameter 50mm, Angle 90°		evel (mOD) 19.16		y County	Council					Job Numbe 13521-01	
	olgini oololig	Location 533781 E 727851 N	Dates	2/2024	Enginee Arup	er						Sheet 1/1	
Depth (m)	Blows for Depth Increment		Level (mOD)	Depth (m)	7.100		Blows	for Depti	n Increme	ent			
(m) 0.00-0.10	3	t Field Records	(mOD) 49.16	(m) — 0.00	0 3	3 6	9	12 15	18	21	24 2	27 30)
0.10-0.20	3		49.10	-									
0.20-0.30 0.30-0.40	4			_									_
).40-0.50).50-0.60	11 9		48.66	- 0.50									
D.60-0.70	4		40.00	- 0.50									
0.70-0.80 0.80-0.90	3			_									
0.90-1.00 1.00-1.10	32		48 16	100									
1.10-1.20	3		48.16	— 1.00 -									
1.20-1.30 1.30-1.40	2												_
1.40-1.50 1.50-1.60	3		47.66	- - 1.50									
1.60-1.70	4		47.00	-									
1.70-1.80 1.80-1.90	3												
1.90-2.00 2.00-2.10	1		47.16	- 2.00									
2.10-2.20	2		47.10	-									
2.20-2.30 2.30-2.40	1 2												_
2.40-2.50 2.50-2.60	2		46.66	- 2.50									
2.60-2.70	3		40.00										
2.70-2.80 2.80-2.90	3 5												
2.90-3.00 3.00-3.10	5 25		46.16	3.00									
5.00-5.10	25		40.10	- 3.00									
			45.66	- 3.50									
			45.00	- 3.50									
			45.40	4.00									
			45.16	4.00 									
				-									
			44.66	4.50									
				-									
Remarks	ug to 1 20m BC	1	44.16	5.00							Scale	Logged By	
Dynamic p Refusal at	probe carried out a 3.10m BGL - 25 b	djacent to hand pit on the instructior lows for 100mm	n of the enginee	r									
										ŀ	1:25 Figure	JC No.	
											13521-0	1-24.DP	н

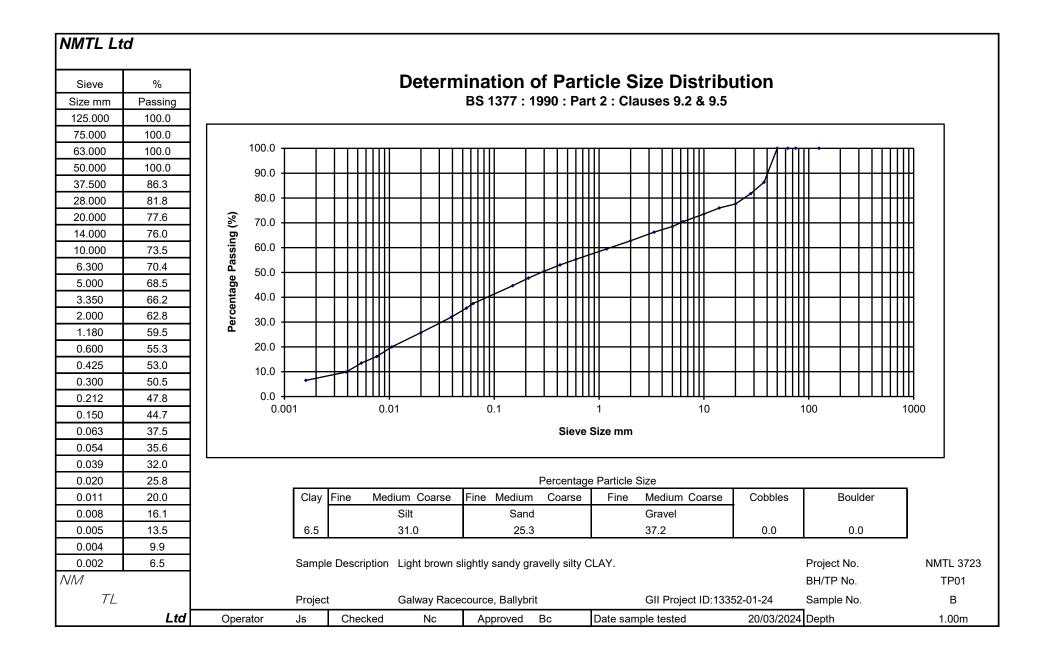
APPENDIX 4 - Borehole Records

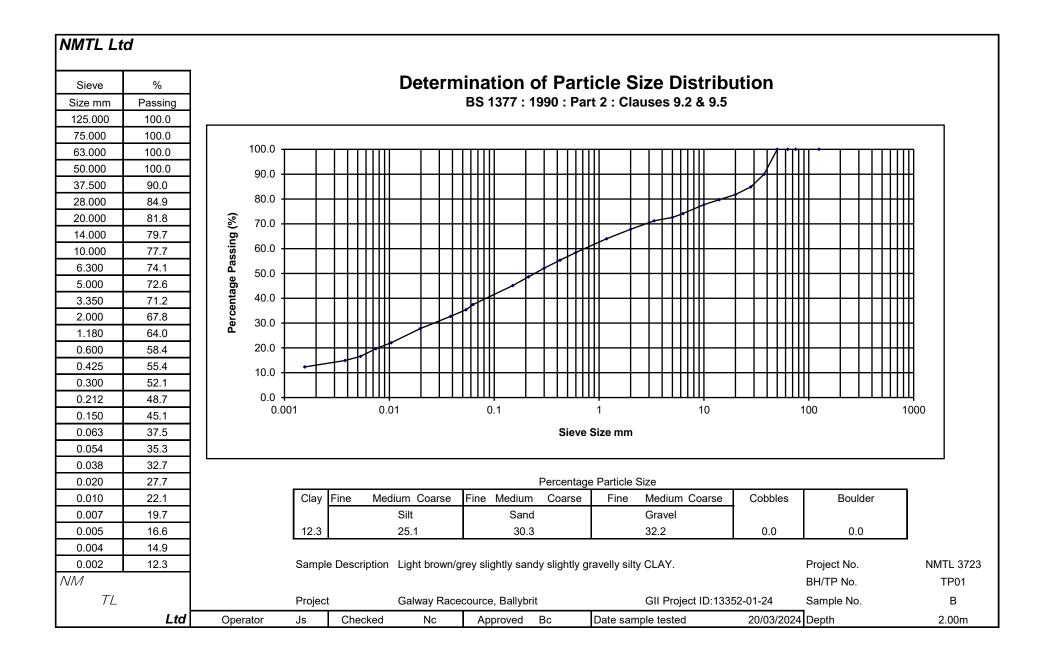
				w.gii.ie			Galway Racecourse Geotechnical Investigations, Co. Galway	DallyDill,		H01
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 200		r ed to 4.30m		Level (mOD) 51.78	Client Galway County Council			b Imbei 21-01-
		Locatio	n		Dates	/02/2024	Project Contractor		Sh	eet
		533	3635 E 7	27902 N	2.		Ground Investigations Ireland			1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Inst
						(0.30)	TOPSOIL: Brown slightly sandy gravelly Clay with rootlets.			
					51.48	- 	Brown slightly sandy slightly gravelly CLAY. Grave is fine to coarse subangular to subrounded.	I		
					51.08	(0.40) 				
					01.00	(0.30)	Grey/light brown slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.	0.0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0		
20.4.65				1 1/1 1 0 1	50.78	1.00	Soft grey/light brown slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.	<u> </u>		
.20-1.65 .20 .20	SPT(C) N=5 B1 D1			1,1/1,1,2,1		- - - -		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
						(1.00) 		0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 D O 40no D 00 n	
						- 		0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	00 0000000000	2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
00-2.45 00 00	SPT(C) N=12 B2 D2			1,2/2,3,2,5	49.78	2.00 (0.40)	Firm to stiff grey/light brown slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.	0 <u>-0 - 0</u> 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0	00,000000000000000000000000000000000000	8.00.50.0000000000000000000000000000000
					49.38	2.40	Firm to stiff grey slightly sandy slightly gravelly CLAY with medium subangular to subrounded	0 <u>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>	000 0 00 0 000	
						(0.60)	cobble content.	<u>, , , , , , , , , , , , , , , , , , , </u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000
.00-3.42	SPT(C) 50/265			5,8/13,14,14,9	48.78	 3.00	Very stiff grey slightly sandy slightly gravelly CLAY	0.0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0	000000000	
00-0.42	011(0)00/200			0,0/10,14,14,8		(0.40)	with medium subangular to subrounded cobble content.	<u>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	00,000,000	60,000,000,000,000,000,000,000,000,000,
40 40	B3 D3				48.38	3.40 	Very stiff grey/light brown sandy slightly gravelly CLAY with medium angular to subangular cobble content.	0.0.0 0.0.0 0.0.0 0.0.0	00 0 0 00 0 00 0	60000000000000000000000000000000000000
						(0.80)		0 <u>.0</u> 0	0.0 4040 8 00 40	
00-4.30	SPT(C) 50/150			6,18/20,30				0.000 0.000 0.000 0.000	0 000 0	
10 10	B4 D4				47.58 47.48	⊢ (0.10)	Obstruction Possible Boulder or Bedrock			
						- - - -	Complete at 4.30m			
						-				
emarks	to 1.20m BGL					 		Scale	Ļo	gge
o Groundw orehole teri	ater encountered minated at 4.30m B0	GL due to d	obstructio	on possible bedrock	or boulder		eletted from 4.0m POL to 4.50m POL	(approx)	-	
anopipe in osock and	stalled in borehole u I gravel surround, pl	iµon comp ain form 1	50m BG	entonite seal from 4.	.oum BGL t	o 4.0M BGL, 9	slotted from 4.0m BGL to 1.50m BGL with	1:25		SK

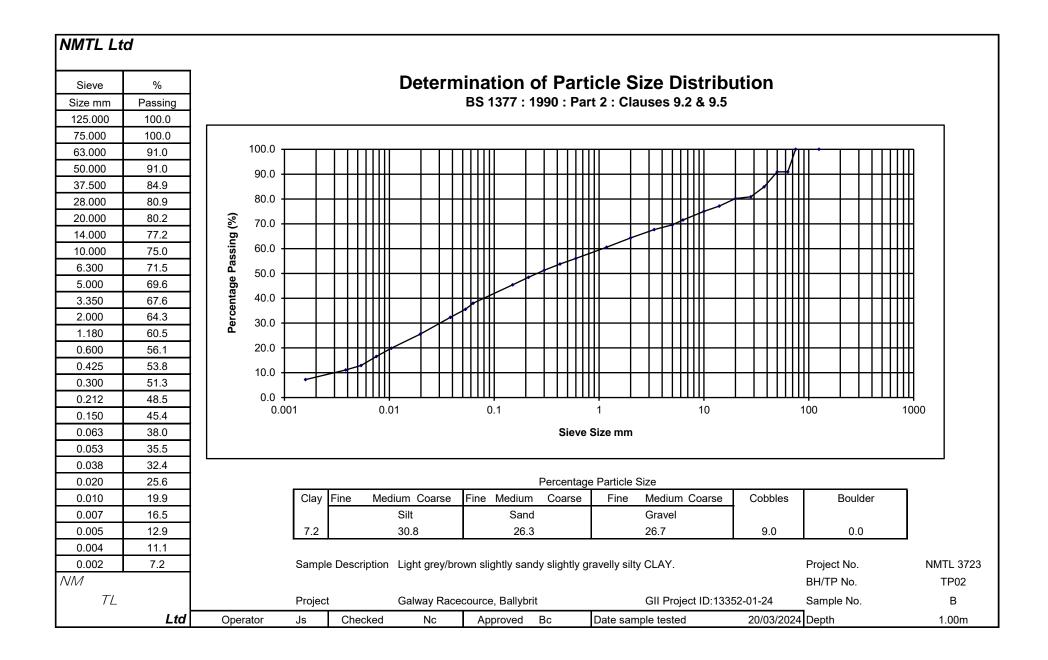
	ando 2000	Casing				Level (mOD)				ob umbe
ethod : Ca	able Percussion	200)mm cas	ed to 2.00m		50.06	Galway County Council			521-01
		Locatio		27890 N	Dates 22	/03/2024	Project Contractor Ground Investigations Ireland		S	heet 1/1
Donth					Loval	Donth	-		7	.,.
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Wate	Ins
						(0.40)	TOPSOIL: Brown slightly sandy gravelly Clay with rootlets.			
					49.66	0.40	Brown slightly sandy slightly gravelly CLAY. Grave is fine to coarse subangular to subrounded.	I		
						(0.80)		······································		
20-1.65	SPT(C) N=5			2,1/1,1,2,1	48.86	1.20	Soft brown/grey slightly sandy slightly gravelly CLAY with medium subangular to subrounded	0.000		
20 20	B1) D1					(0.60)	cobble content.	0 <u>-0-</u> 0-		
80 80 00-2.15	B2 D2 SPT(C) 50/0			25,25/50	48.26 48.16 48.06	1.80 1.90 2.00	Very stiff brown/grey slightly sandy slightly gravelly CLAY with medium subangular to subrounded	/ <u>6 </u>	5	
50-2.15	011(0)00/0			23,20/00			Cobble content. Obstruction Possible Boulder or Bedrock	_		
						-	Complete at 2.00m			
emarks nd pit dug	to 1.20m BGL					F		Scale (approx)	L	ogge y
	ater encountered							,		

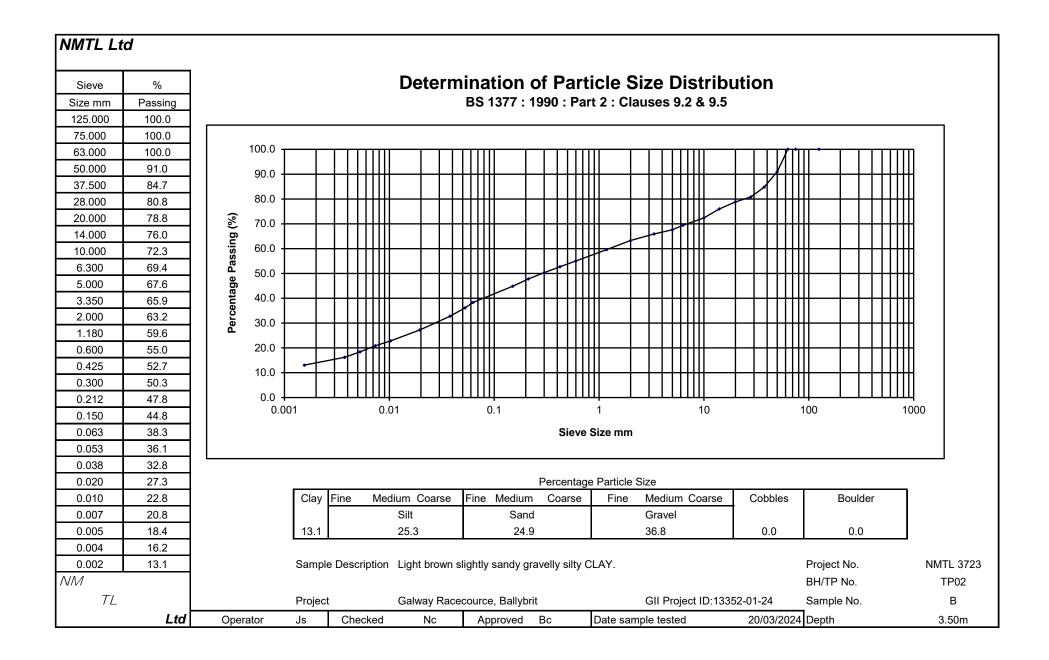
Machine:Da Method :Ca	ando 2000 able Percussion	Casing 200		r ed to 4.40m		Level (mOD) 47.71	Client Galway County Council			b I mber 21-01-2
		Location	n 3700 E 7	27811 N	Dates 21	/03/2024	Project Contractor Ground Investigations Ireland		Sh	eet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
						(0.30)	TOPSOIL: Brown slightly sandy gravelly Clay with rootlets.			
					47.41	0.30	Brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse subangular to subrounded.			
						(0.60)				
					46.81	0.90 (0.30)	Grey/light brown slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.			
.20-1.65 .20 .20	SPT(C) N=8 B1 D1			1,1/2,2,2,2	46.51	- 1.20 	Firm grey/light brown slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.	0 0 0 0 0 0 0 0		
						- - - - -		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000	
.00-2.45	SPT(C) N=9			1,2/3,2,2,2		 (1.50)			004000000000	10000000000000000000000000000000000000
.00 .00	B2 D2			1,210,2,2,2		- - - -			000000000000000	0.000,000,000,000,000,000,000,000,000,0
								0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0	
					45.01	2.70 (0.30)	Firm grey slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.	<u>, , , , , , , , , , , , , , , , , , , </u>	00,000,000,000	
00-3.38 00 00	SPT(C) 50/225 B3 D3			6,8/14,16,14,6	44.71	3.00	Very stiff grey slightly sandy slightly gravelly CLAY with medium subangular to subrounded cobble content.	<u>6.24</u> 0.04 <u>0.04</u>	000 00 00 0000	
								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00,00,000,000	90,00,00,00,00,00,00,00,00,00,00,00,00,0
						(1.30)		0.0.0.0 0.0.0 0.0.0 0.0.0	0,00,000,000,00	
00-4.30 00 00	SPT(C) 50/150 B4 D4			7,13/14,36				<u>6.04</u>	0 00 00 00 00 00 00	
					43.41 43.31	- 4.30 - (0.10) - 4.40	Obstruction Possible Boulder or Bedrock Complete at 4.40m	0 0 0 0 0 0 0 0	0 0 0 0 0	
lemarks						- - -				
and pit dug	to 1.20m BGL ater encountered							Scale (approx)	Lo By	gge

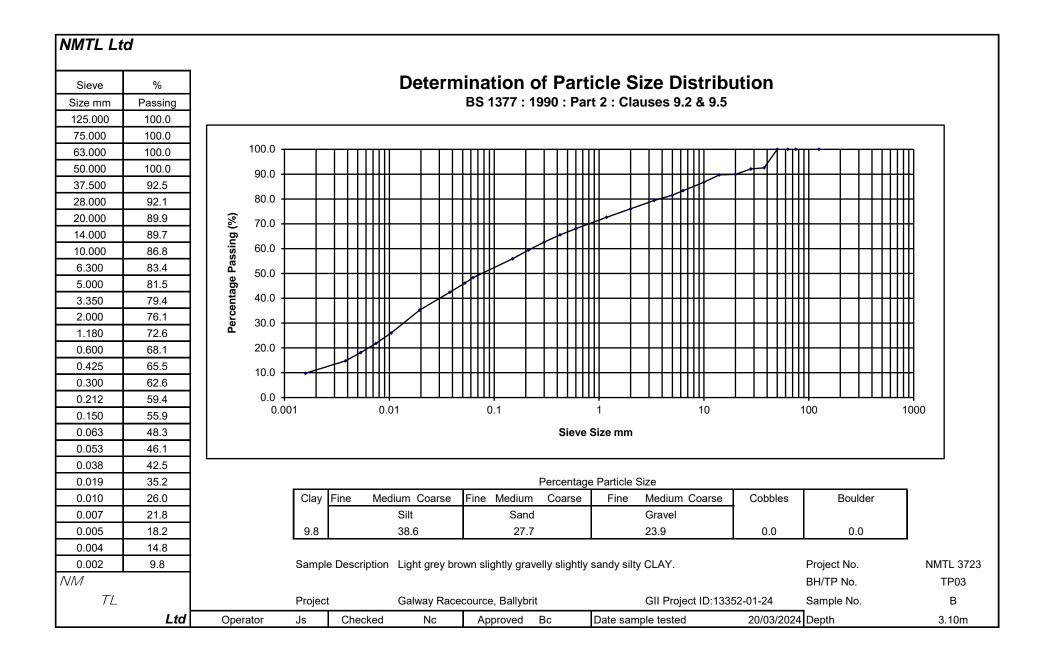

APPENDIX 5 – Laboratory Testing

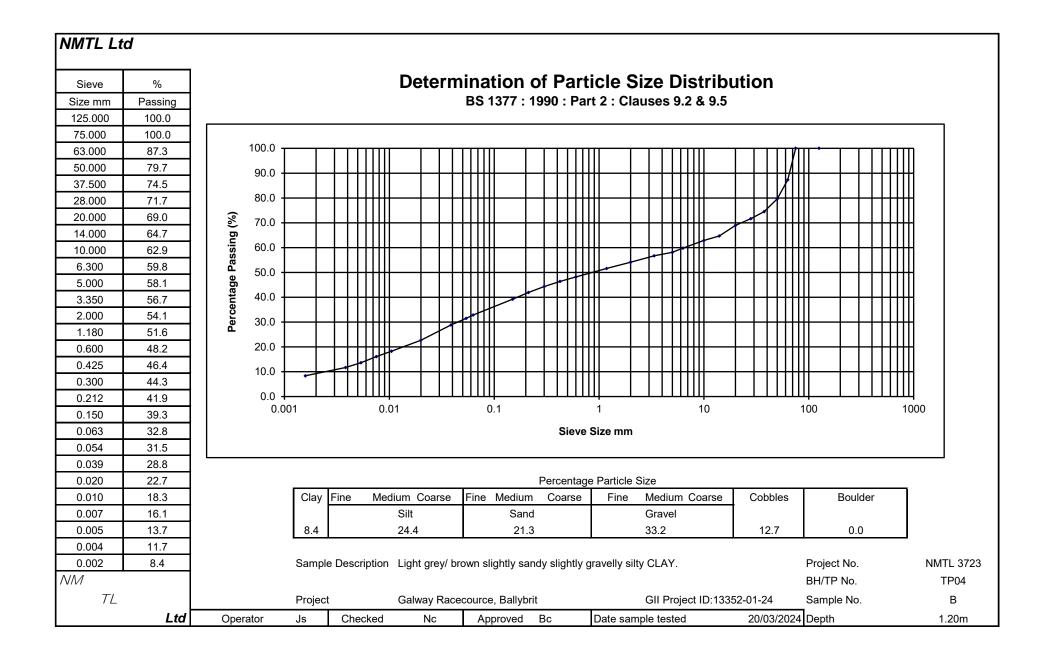


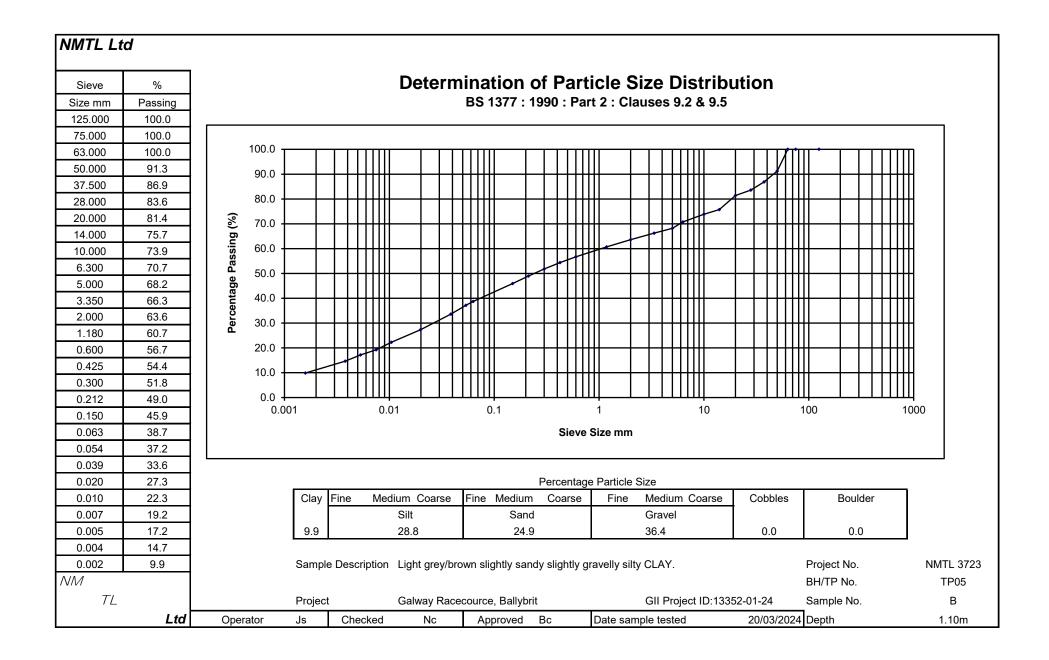

National Materials Testing Laboratory Ltd.

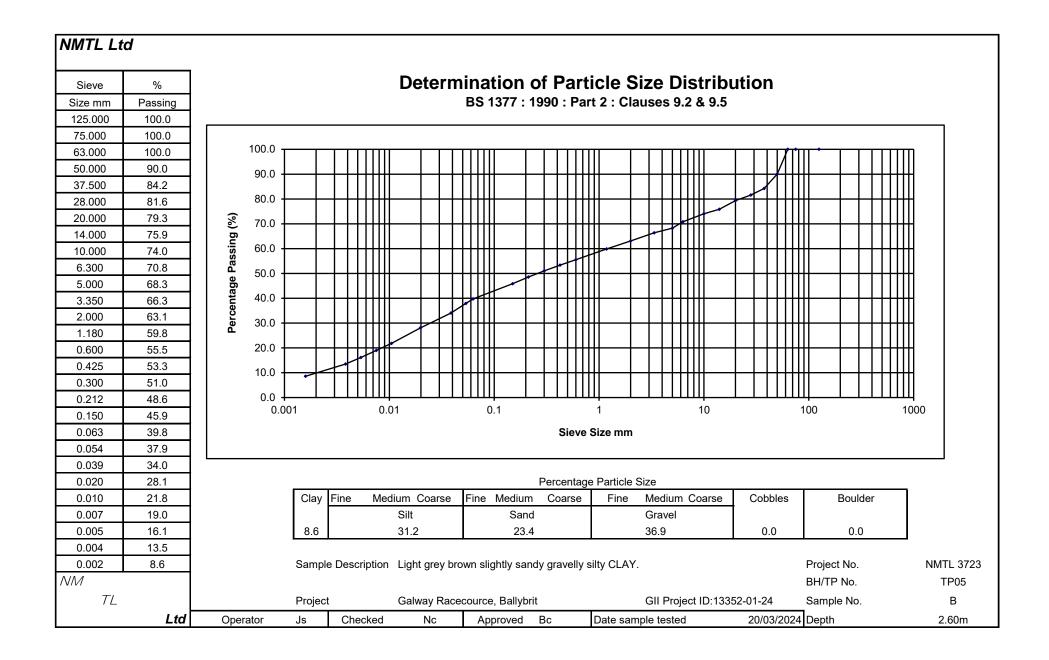

				Particle			Index Prop	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP01	1.30	D	16.4		53.0	23	14	9						
TP02	1.00	D	13.6		55.4	23	13	10						
TP02	2.40	D	10.2		66.8	20	12	8						
TP02	3.50	D	11.1		52.7	21	12	9						
TP03	1.10	D	15.4		67.0	45	23	22						
TP03	3.10	D	12.8		65.5	21	12	9						
TP04	1.20	D	12.1		46.3	21	13	8						
TP04	3.20	D	12.2		71.7	22	12	10						
TP05	1.10	D	14.4		54.4	26	16	10						
TP05	2.60	D	13.5		53.3	22	13	9						
TP05	3.60	D	10.8		71.5	22	14	8						
TP06	1.00	D	12.8		66.0	21	13	8						
TP06	2.40	D	10.6		47.8	21	13	8						
TP07	1.00	D	14.1		53.9	23	13	10						
TP08	1.10	D	12.2		52.6	21	12	9						
TP08	2.10	D	9.9		62.4	20	11	9						
TP09	1.00	D	16.9		59.2	26	15	11						
TP09	2.25	D	11.7		52.2	19	12	7						
TP10A	1.00	D	11.5		60.3	20	12	8						
TP10A	2.10	D	10.2		66.3	20	11	9						
TP11	1.00	D	13.5		66.7	22	13	9						
MTL		Notes :									Job ref No.	NMTL 3723	GII Project ID:	13352-01-24
	1	110105.		oto opri	out using p	roforrod (dofinitive	aathad ····			Location		acecources Bally	

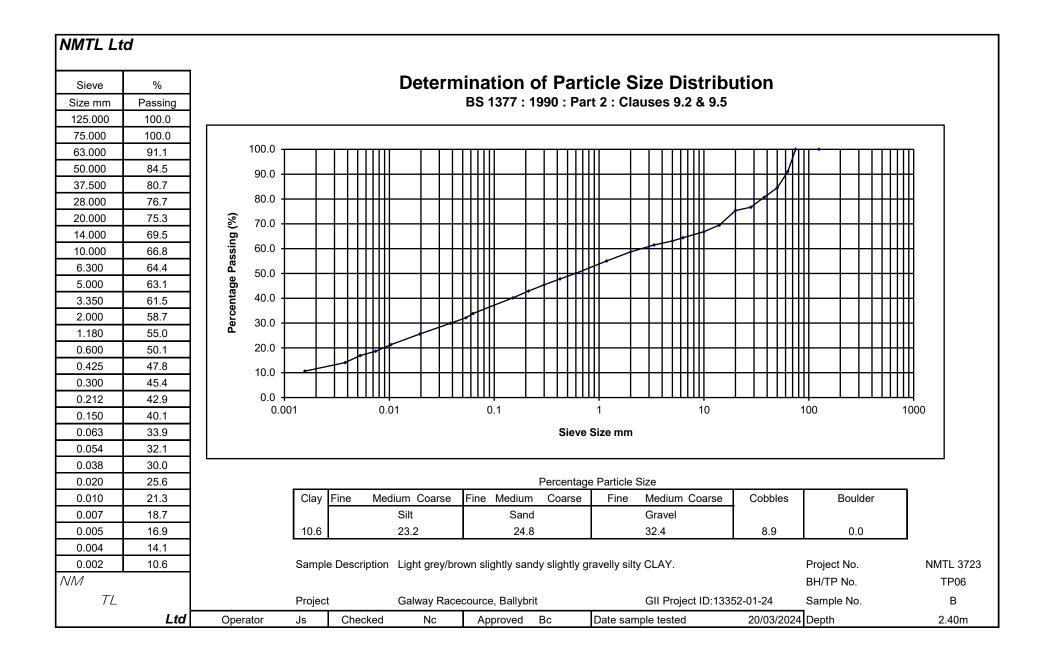

SUMMARY OF TEST RESULTS

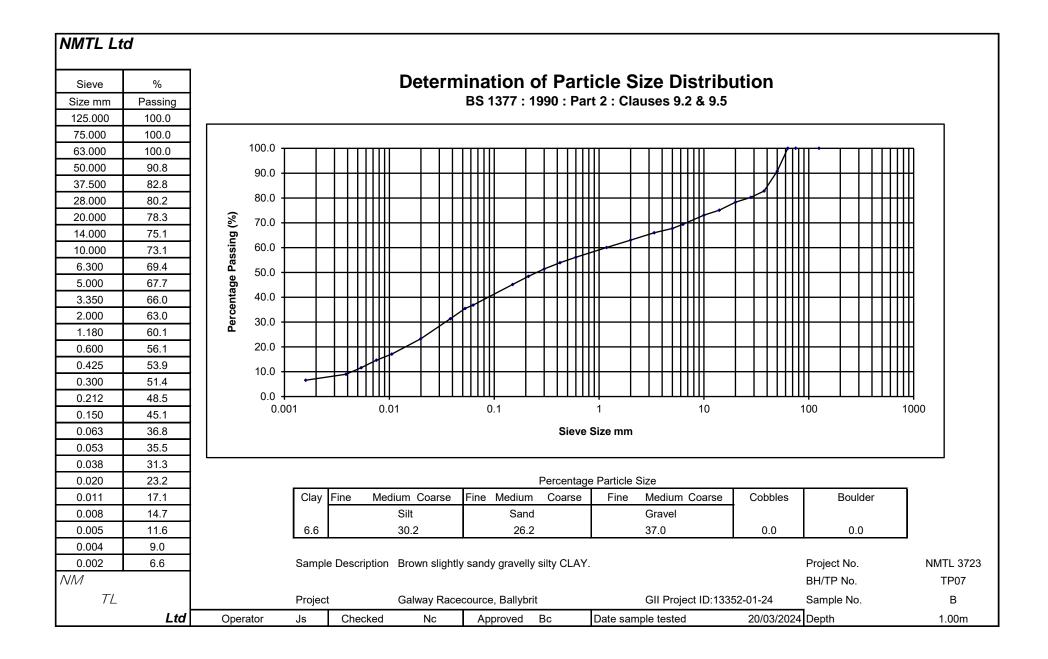


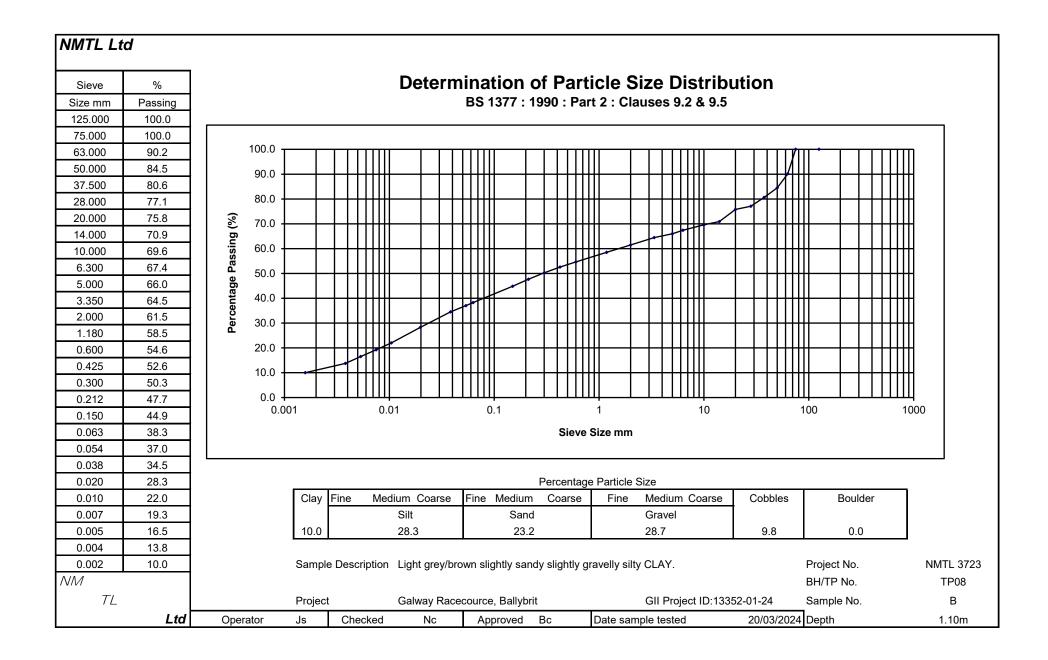


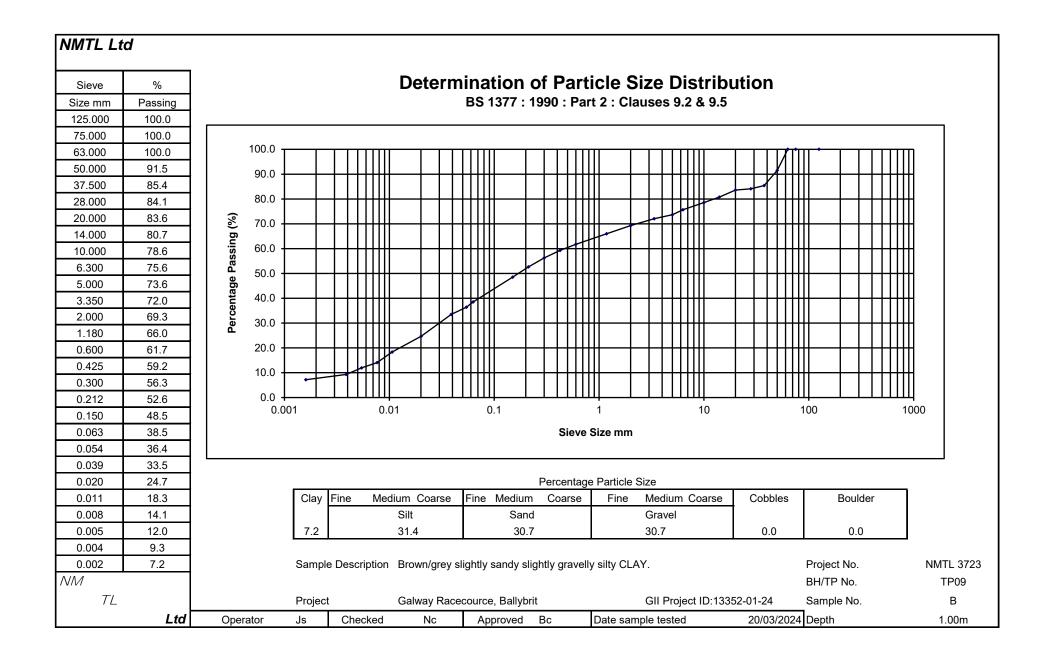


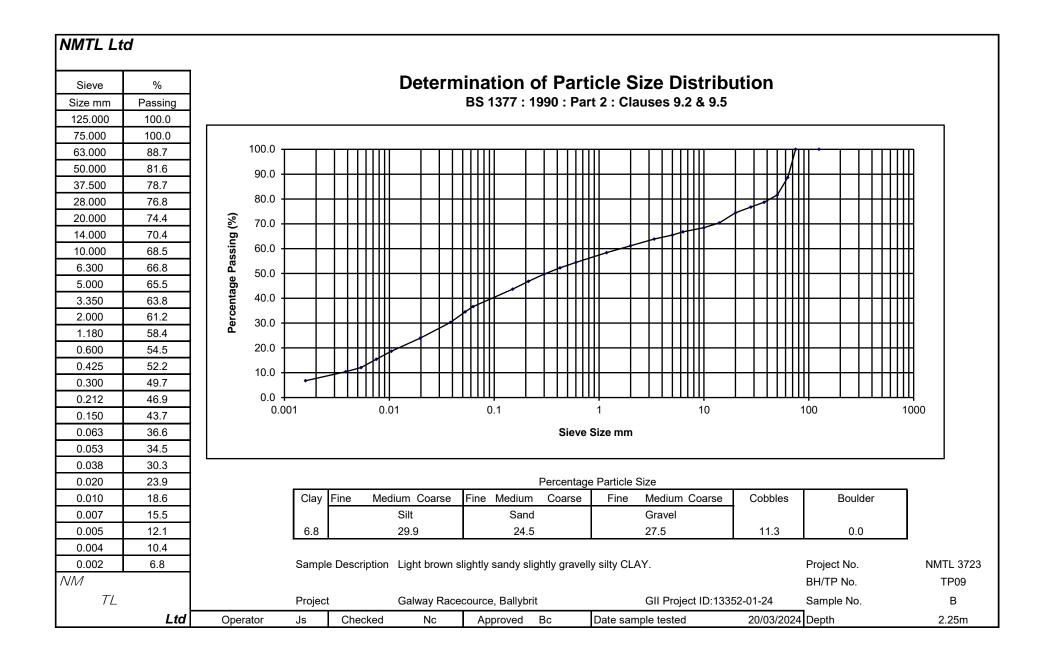


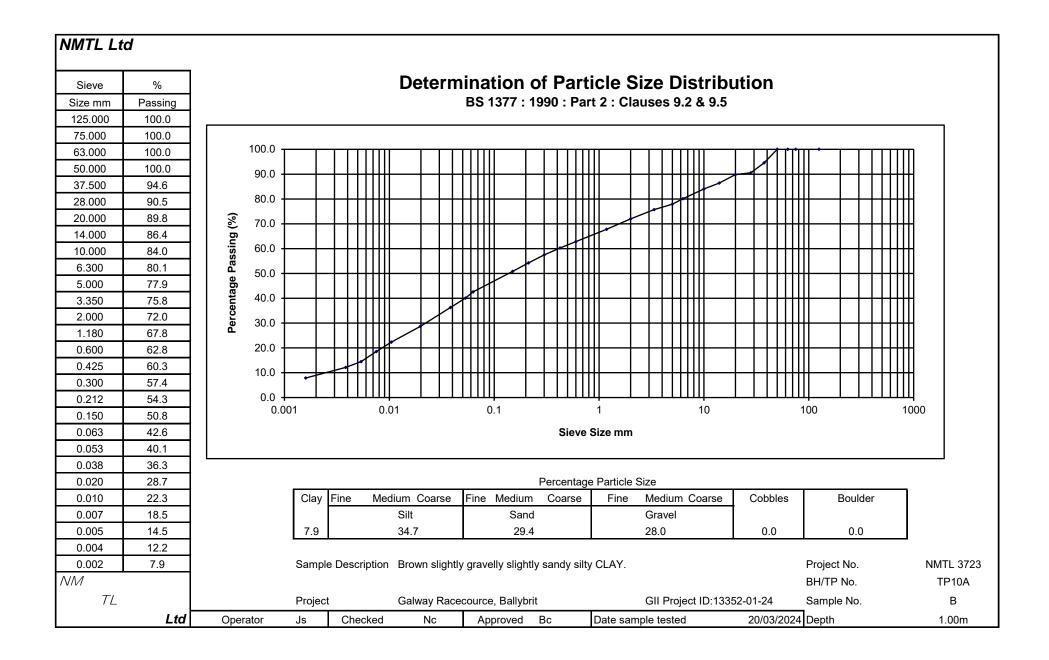


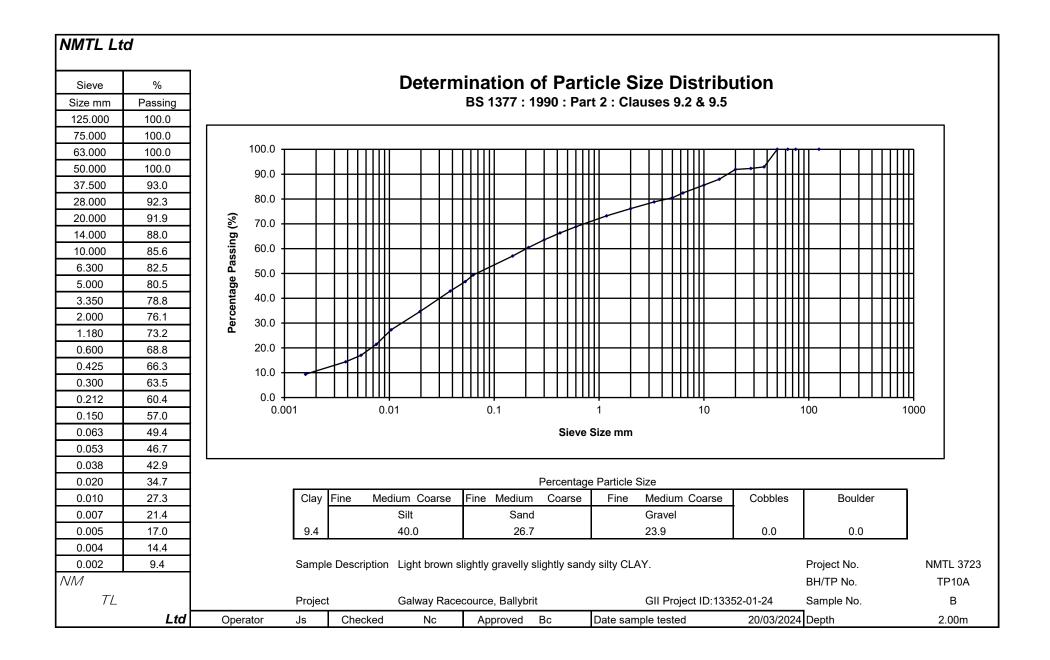


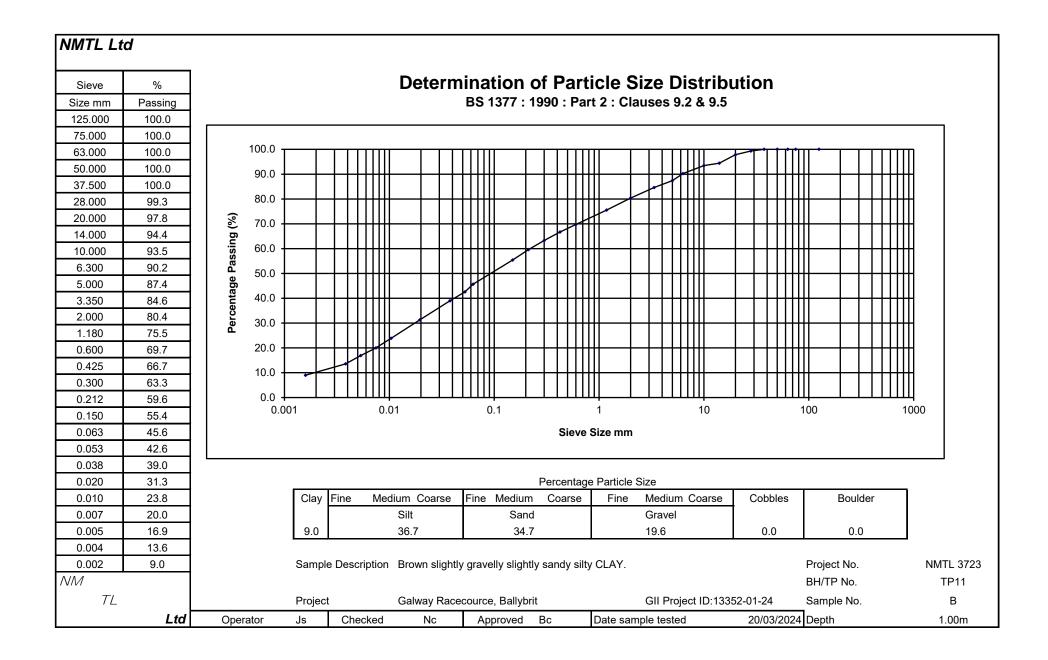


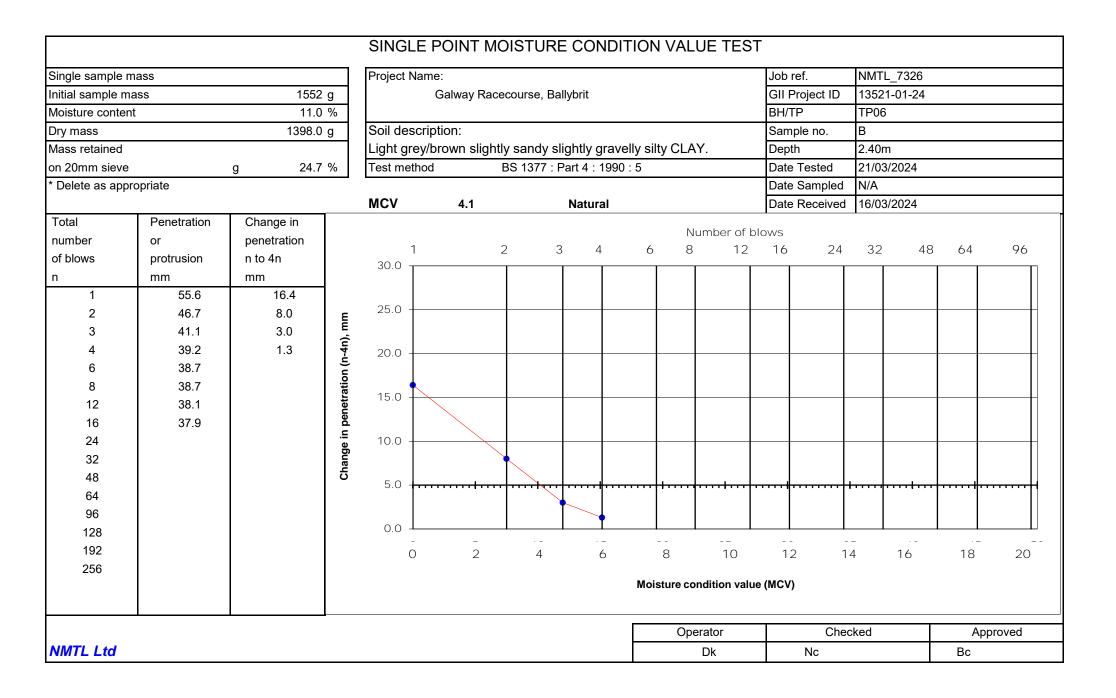


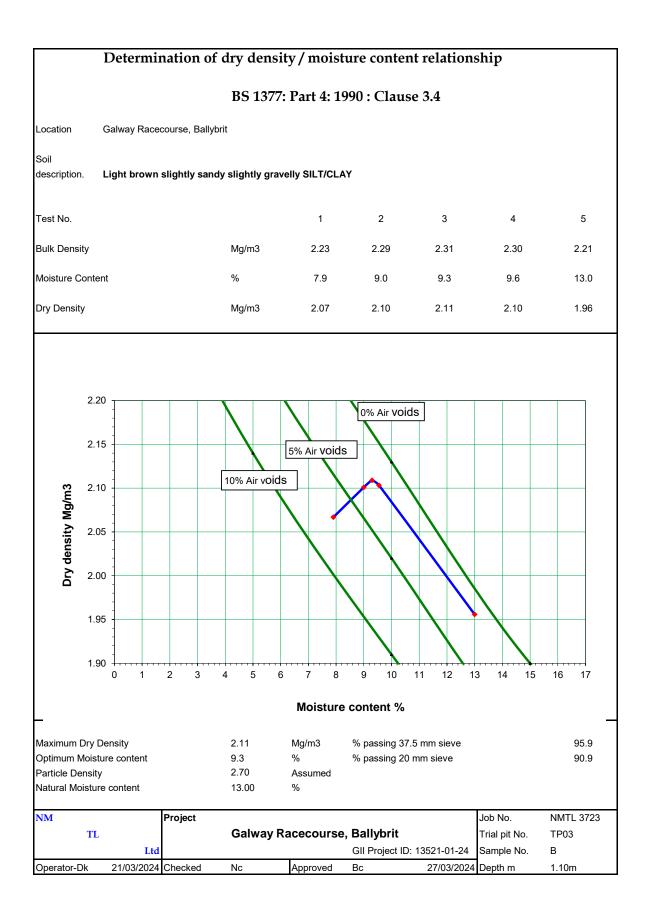


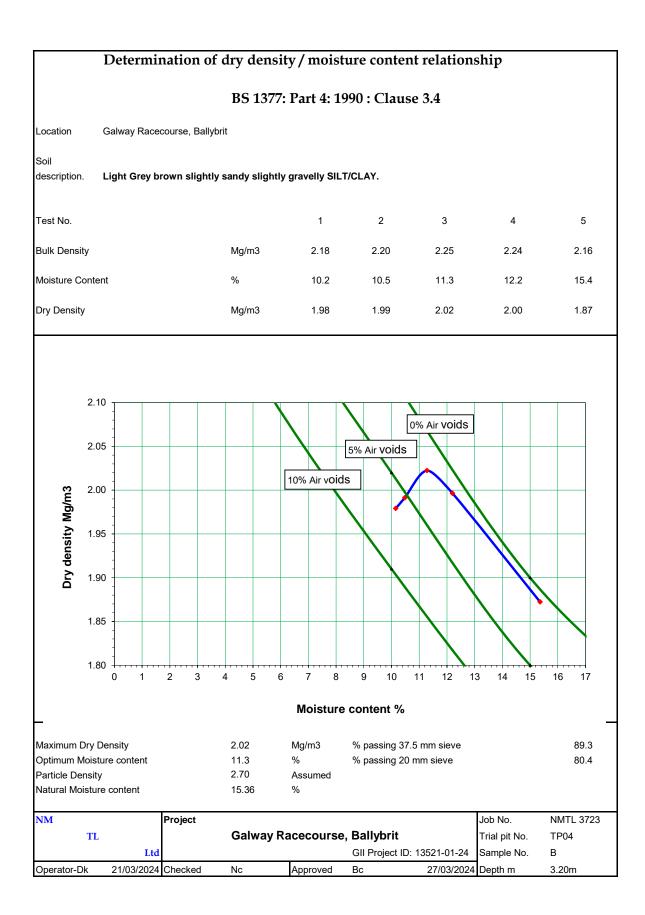


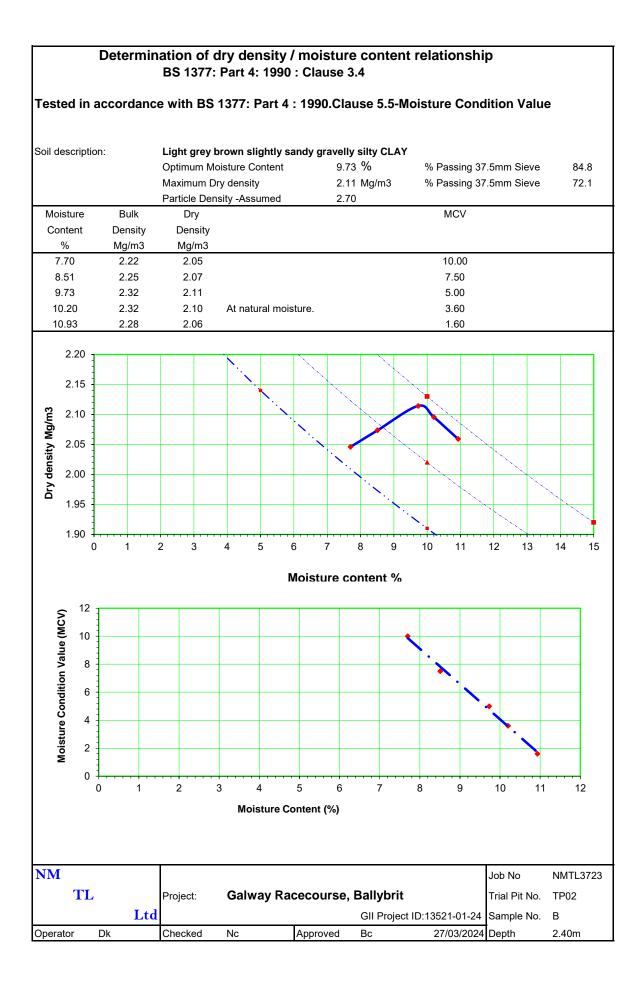


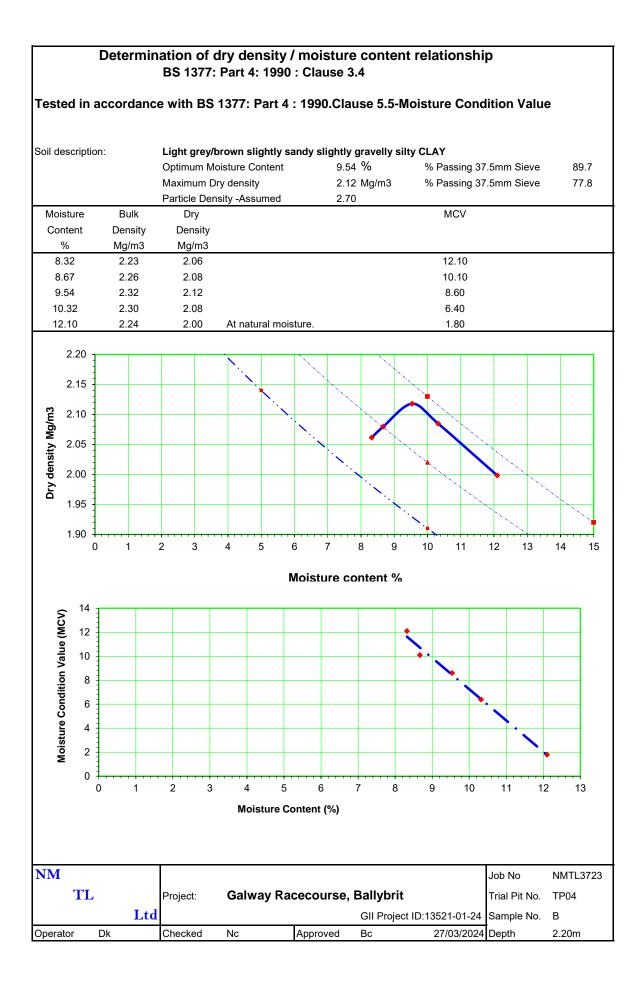


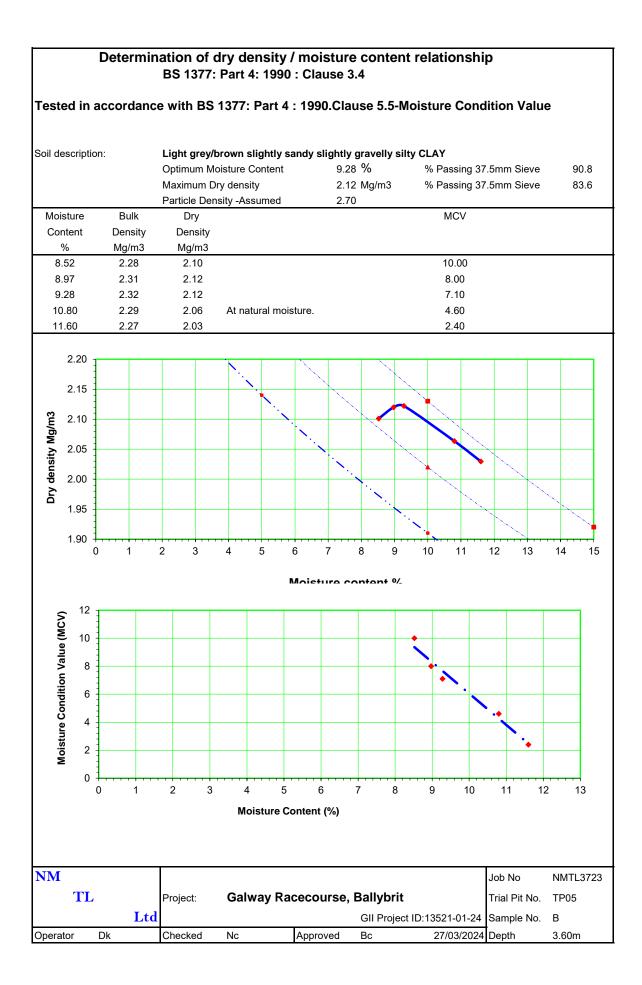



					LE POINT MO	JSTUR			IVAL	JE IES						
Single sample ı		1683		Project Name:								ef.		L_7326		
Initial sample m		Galway Racecourse, Ballybrit								oject ID		13521-01-24				
Moisture conter	nt	13.1								BH/TF		TP02	2			
Dry mass 1487.9 g					cription:						Samp		В			
Mass retained					rey/brown slightl			-	ty CLA`	Y.	Depth		1.00			
on 20mm sieve g 19.8 %				Test me	ethod	BS 1377 : F	Part 4 : 19	90 : 5				Fested		3/2024		
* Delete as appropriate												Sampled				
			-	MCV	1.3		Natural				Date I	Received	16/0	3/2024		
Total	Penetration	Change in							Ni	umber of b	lows					
number	or	penetration			1 :	2 3	4	6	8	12	16	24	32	48	64	96
of blows	protrusion	n to 4n		30.0	-	1	· · · ·									
n	mm	mm	4													
1	56.6	7.7		25.0												
2	49.5	1.3	Ę	25.0												
3	49.1), n													
4	48.9		n-4	20.0												
6	48.6) uo													
8	48.2		rati	15.0												
12			enet													
16			d u													
24			Change in penetration (n-4n), mm	10.0												
32			han													
48			U U	5.0	+	+			+				+			
64																
96				0.0		•										
128						· -	· -								· _ · _	
192					0 2	4	6		8	10	12	1	4	16	18	20
256								Mois	sture cor	ndition valu	e (MCV)					
									Ope	rator		Che	cked		A	oproved
NMTL Ltd										Dk		Nc			Bc	


				SING	LE POINT N	IOISTUR	E CONE	DITION	VALU	E TES	Г							
Single sample r	nass			Project Name:								f.	NMT	NMTL_7326				
Initial sample m	ass	1580	Galway Racecourse, Ballybrit								oject ID	1352	13521-01-24					
Moisture conter	nt	12.0								BH/TF)	TP04	TP04					
Dry mass 1410.8 g					scription:						Samp	e no.	В	В				
Mass retained					rey/brown slig	htly sandy s	lightly gra	velly silt	y CLAY		Depth		1.20r	n				
on 20mm sieve		g 31.0	%	Test me	ethod	BS 1377 :	Part 4 : 19	90 : 5			Date	ested	21/03	3/2024				
* Delete as appropriate											Date S	Sampled	N/A					
				MCV	3.0		Natural				Date F	Received	16/03	3/2024				
Total	Penetration	Change in							Nue	nber of b								
number	or	penetration			1	2 3	3 4	6	inur 8	nber of b 12	16 16	24	32	48	64	96		
of blows	protrusion	n to 4n		30.0	1 	2 、							52	40				
n	mm	mm																
1	55.6	14.7																
2	45.2	4.8	Ē	25.0														
3	41.5	1.2	Change in penetration (n-4n), mm															
4	40.9		-4n	20.0														
6	40.5		u (L															
8	40.4		atic	15.0														
12	40.3		neti	15.0														
16			be															
24			ge ir	10.0														
32			Janç															
48			Ċ	5.0			 											
64															-			
96							♦											
128				0.0			· -					I				L :		
192					0 2	4	6		8	10	12		4	16	18	20		
256																		
								Mois	ture conc	lition valu	e (MCV)							
		1	<u>I</u>						Opera	ator		Che	cked		Ap	proved		
NMTL Ltd										0k	1	Nc			Bc			


Single sample i	mass			Project Name:									NMT	NMTL_7326				
nitial sample m		Galway Racecourse, Ballybrit								ect ID		 13521-01-24						
Moisture conter	nt								BH/TP		TP05	TP05						
Dry mass 1372.2 g					cription:						Sample	no.	В					
Mass retained					ey brown sli	ghtly sandy	gravelly	silty CLA	Υ.		Depth		2.60r	n				
on 20mm sieve g 18.4 %					thod	BS 1377 :	Part 4 : 1	990 : 5			Date Te	ested	21/03	3/2024				
* Delete as appropriate											Date Sa	ampled	N/A			-		
				MCV	0.9		Natura	ıl			Date Received 16/			3/2024				
Total	Penetration	Change in							NL		lauva							
number	or	penetration		-	1	2	3 4	6		umber of k 12	16	24	32	48	64	96		
of blows	protrusion	n to 4n		30.0 -	I	2	3 4	0		12	10	24	32	40	04	90		
n	mm	mm		0010														
1	46.2	6.3																
2	41.7	1.9	Ξ	25.0 -														
3	40.0		Change in penetration (n-4n), mm															
4	39.9		-4n	20.0 -											 			
6	39.8		u (r															
8	39.8		atic	15.0 -														
12			neti	15.0 -														
16			be															
24			ge ir	10.0 -														
32			Janç															
48			Ċ	5.0 -					<u> </u>						l-			
64																		
96																		
128				0.0				_							·			
192				C) 2	4	e		8	10	12	14		16	18	20		
256																		
								Мо	isture co	ndition valu	e (MCV)							
		1	<u> </u>						Ορε	erator		Chec	ked		Ar	proved		
NMTL Ltd									- 1	Dk	N	lc			Bc	<u>.</u>		




Single sample i	mass			Project N	lame [.]						Job ref.		NMT	L 7326				
nitial sample n		1676	n í	Galway Racecourse, Ballybrit								GII Project ID		13521-01-24				
Moisture conter		10/8	Galway Racecourse, BallyDrit									TP05						
Dry mass	it.	1512.6	Soil desc	rintion.						BH/TP Sample	no	В						
Mass retained		1012.0	, a		/brown slightly	sandy slightl	v aravellv	silty CLA	Y		Depth	110.	3.60n	n				
					hod	BS 1377 : I		-			Date Te	sted		 3/2024				
on 20mm sieve g 16.4 % * Delete as appropriate					liou	B0 1011 . 1					Date Sa		N/A	72021				
Delete as appropriate				MCV	4.5		Natural				Date Re			8/2024				
Total	Penetration	Change in	1				- Tuturui						10,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
number	or	penetration								mber of b								
of blows	protrusion	n to 4n		1		2 3	3 4	6	8	12	16	24	32	48	64	96		
n	mm	mm		^{30.0} T														
1	75.4	16.5																
2	67.2	9.4	٦	25.0 -														
3	61.9	4.1	Change in penetration (n-4n), mm															
4	58.9		-4n)	20.0 -														
6	57.9		- u															
8	57.8		atio	15.0														
12	57.8		Jetr	15.0 -	$\overline{}$													
16			bei															
24			e in	10.0 -														
32			ang															
48			ີ 5	5.0 -														
64				0.0			•											
96																		
128				0.0 1	_		· -								·	L _		
192				0		4	6		8	10	12	14		16	18	20		
256																		
								Moi	sture con	dition valu	e (MCV)							
		I	J						Oper	ator		Chec	ked	T	Ap	proved		
NMTL Ltd									-	Dk	N	lc			Bc			

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8		BC-MRA	UKAS TESTING 4225
Attention :	Stephen Kealy		
Date :	12th March, 2024		
Your reference :	13521-01-24		
Our reference :	Test Report 24/3391 Batch 1		
Location :	Galway Racecourse Ballybrit		
Date samples received :	27th February, 2024		
Status :	Final Report		
Issue :	202403121508		

Nine samples were received for analysis on 27th February, 2024 of which eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 23.313 kg of CO2

Scope 1&2&3 emissions - 55.094 kg of CO2

Authorised By:

Ly Kr

Liza Klebe Project Co-ordinator

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

EMT Sample No.	1-4	5	6-9	10	11-14	15	16-19	20-23				
Sample ID	TP03	TP03	TP03	TP03	TP04	TP04	TP04	TP04				
Depth	0.55	1.10	1.50	3.10	0.50	1.20	2.20	3.30		Diseases		
COC No / misc											e attached n ations and a	
		-	VIT	т	VIT	-		VIT				
Containers	VJT	Т	VJT	Т	VJT	Т	VJT	VJT				
Sample Date	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024		LODIEOIT	onito	No.
Antimony	2	-	<1	-	1	-	<1	<1		<1	mg/kg	TM30/PM15
Arsenic [#]	5.9	-	2.3	-	5.7	-	3.5	2.8		<0.5	mg/kg	TM30/PM15
Barium [#]	46	-	26	-	41	-	31	25		<1	mg/kg	TM30/PM15
Cadmium [#]	1.5	-	0.6	-	0.8	-	0.8	0.6		<0.1	mg/kg	TM30/PM15
Chromium [#]	54.2	-	21.8 7	-	57.9	-	27.3 9	9.2		<0.5	mg/kg	TM30/PM15 TM30/PM15
Copper [#] Lead [#]	13 16	-	7 <5	-	10 16	-	8	7 <5		<1 <5	mg/kg mg/kg	TM30/PM15
Mercury [#]	<0.1	-	<0.1	-	0.2	-	<0.1	<0.1		<0.1	mg/kg	TM30/PM15
Molybdenum [#]	3.2	-	1.1	-	3.6	-	1.3	0.3		<0.1	mg/kg	TM30/PM15
Nickel [#]	26.0	-	9.9	-	25.1	-	16.5	9.7		<0.7	mg/kg	TM30/PM15
Selenium [#]	<1	-	<1	-	1	-	<1	<1		<1	mg/kg	TM30/PM15
Zinc [#]	48	-	19	-	45	-	34	20		<5	mg/kg	TM30/PM15
PAH MS									 			
Naphthalene [#]	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	-	<0.03	-	<0.03	-	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene [#]	<0.05	-	< 0.05	-	<0.05	-	<0.05	< 0.05		< 0.05	mg/kg	TM4/PM8
Fluorene #	<0.04 <0.03	-	<0.04 <0.03	-	<0.04 <0.03	-	<0.04 <0.03	<0.04 <0.03		<0.04 <0.03	mg/kg	TM4/PM8 TM4/PM8
Phenanthrene [#] Anthracene [#]	<0.03	-	<0.03	-	<0.03	-	<0.03	<0.03		<0.03	mg/kg mg/kg	TM4/PM8
Fluoranthene #	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Pyrene [#]	<0.03	-	<0.03	-	<0.03	-	<0.03	< 0.03		<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	-	<0.06	-	<0.06	-	<0.06	<0.06		<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	-	<0.02	-	<0.02	-	<0.02	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	-	<0.07	-	<0.07	-	<0.07	<0.07		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Coronene	< 0.04	-	<0.04	-	< 0.04	-	< 0.04	<0.04		< 0.04	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	<0.64 <0.05	-	<0.64 <0.05	-	<0.64 <0.05	-	<0.64 <0.05	<0.64 <0.05		<0.64 <0.05	mg/kg	TM4/PM8 TM4/PM8
Benzo(k)fluoranthene	< 0.05	-	< 0.05	-	< 0.05	-	<0.05	<0.05		<0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
PAH Surrogate % Recovery	97	-	80	-	100	-	94	95		<0.02	%	TM4/PM8
3 ,	-						-			-		
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	-	<30	-	<30	-	<30	<30		<30	mg/kg	TM5/PM8/PM16

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

EMT Sample No.	1-4	5	6-9	10	11-14	15	16-19	20-23		1		
Sample ID	TP03	TP03	TP03	TP03	TP04	TP04	TP04	TP04				
Depth	0.55	1.10	1.50	3.10	0.50	1.20	2.20	3.30		Please se	e attached r	otes for all
COC No / misc									 		ations and a	
Containers	VJT	т	VJT	т	VJT	т	VJT	VJT				
Sample Date				22/02/2024		22/02/2024		22/02/2024	 			
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024		LODIEON	Onito	No.
TPH CWG												
Aliphatics												
>C5-C6 (HS_1D_AL)#	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	 	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL) [#]	<0.2	-	<0.2	-	<0.2	-	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)*	<4	-	<4	-	<4	-	<4	<4		<4	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)*	<7 <7	-	<7 <7	-	<7 <7	-	<7 <7	<7 <7		<7 <7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL) [#] Total aliphatics C5-35 (EH_CU+HS_1D_AL)	<19	-	<19	-	<19	-	<19	<19		<19	mg/kg mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics	<15	-	~13	-	~13	-	~13	<13		<15	iiig/kg	
>C5-EC7 (HS 1D AR)#	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	-	<0.2	-	<0.2	-	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	-	<4	-	<4	-	<4	<4		<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	-	<7	-	<7	-	<7	<7		<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	-	<7	-	<7	-	<7	<7		<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH_CU+HS_1D_AR)#	<19	-	<19	-	<19	-	<19	<19	 	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35) (EH_CU+HS_1D_Total)	<38	-	<38	-	<38	-	<38	<38		<38	mg/kg	TM5/TM36/PM8/PM12/PM16
MTBE#	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM36/PM12
Benzene [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM36/PM12
Toluene [#]	<5	-	<5	-	<5	-	<5	<5	 	<5	ug/kg	TM36/PM12
Ethylbenzene [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM36/PM12
m/p-Xylene [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM36/PM12
PCB 28 [#]	<5	-	<5		<5	-	<5	<5		<5	110/140	TM17/PM8
PCB 28 PCB 52 [#]	<5	-	<5	-	<5	-	<5	<5	 	<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
PCB 52 PCB 101 #	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	_	<5	-	<5	-	<5	<5		<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	-	<5	-	<5	-	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	-	<35	-	<35	-	<35	<35		<35	ug/kg	TM17/PM8
Natural Moisture Content	20.7	-	10.9	-	17.7	-	13.1	9.0		<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	-	<0.3	-	<0.3	-	<0.3	<0.3		<0.3	mg/kg	TM38/PM20
Chromium III	54.2	-	21.8	-	57.9	-	27.3	9.2		<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.73	-	0.03	-	0.89	-	0.27	0.05		<0.02	%	TM21/PM24

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

Eini tob no.										_		
EMT Sample No.	1-4	5	6-9	10	11-14	15	16-19	20-23				
Sample ID	TP03	TP03	TP03	TP03	TP04	TP04	TP04	TP04				
Depth	0.55	1.10	1.50	3.10	0.50	1.20	2.20	3.30		Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	т	VJT	т	VJT	т	VJT	VJT				
Sample Date	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt		27/02/2024		27/02/2024		27/02/2024						No.
Loss on Ignition [#] pH [#]	5.4 8.09	-	<1.0 8.38	-	7.9 7.94	-	1.8 8.15	4.8 8.75		<1.0 <0.01	% pH units	TM22/PM0 TM73/PM11
рп	0.09	-	0.50	-	7.54	-	0.15	0.75		<0.01	priums	
Asbestos Type*	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD			None	Subcontracted

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : CEN 10:1 1 Batch

EMT Sample No.	1-4	6-9	11-14	16-19	20-23					
Sample ID	TP03	TP03	TP04	TP04	TP04					
Depth	0.55	1.50	0.50	2.20	3.30			Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT	VJT					
Sample Date	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024	 				
Sample Type		Soil	Soil	Soil	Soil					
Batch Number		1	1	1	1					
Date of Receipt				27/02/2024	27/02/2024			 LOD/LOR	Units	Method No.
Dissolved Antimony (A10)#	< 0.02	<0.02	<0.02	< 0.02	< 0.02			<0.02	mg/kg	TM170/PM14
Dissolved Arsenic (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM170/PM14
Dissolved Alsenic (A10) Dissolved Barium (A10) [#]	<0.023	<0.023	<0.023	<0.023	<0.023			<0.023	mg/kg	TM170/PM14
	< 0.005	<0.005	<0.005	<0.005	< 0.005			< 0.005	mg/kg	TM170/PM14
Dissolved Cadmium (A10) [#] Dissolved Chromium (A10) [#]	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003	mg/kg	TM170/PM14 TM170/PM14
Dissolved Copper (A10) [#]	<0.013	<0.013	<0.013	<0.013	<0.013			<0.013	mg/kg	TM170/PM14
Dissolved Lead (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07			<0.07	mg/kg	TM170/PM14
Dissolved Lead (A10) Dissolved Mercury (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM170/PM14
Dissolved Molybdenum (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM170/PM14
Dissolved Nickel (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM170/PM14
Dissolved Selenium (A10) [#]	<0.03	< 0.03	< 0.03	< 0.03	< 0.03			<0.03	mg/kg	TM170/PM14
Dissolved Zinc (A10) [#]	<0.03	< 0.03	< 0.03	< 0.03	< 0.03			< 0.03	mg/kg	TM170/PM14
									5 5	
Total Phenols HPLC	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3			<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	<5	<5	<5	<5	<5			<5	mg/kg	TM38/PM0
Supriale as 504	-0			-5					ilig/kg	
Mass of raw test portion	0.1063	0.1003	0.1111	0.176	0.098				kg	NONE/PM17
Chloride [#]	5	<3	4	5	<3			<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09				kg	NONE/PM17
	0.00	0.00	0.00	0.00	0.00	 			Ng	
Dissolved Organic Carbon	<2	<2	2	<2	<2			<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20	20	<20	<20			<20	mg/kg	TM60/PM0
Total Dissolved Solids [#]	730	<350	680	850	<350			<350	mg/kg	TM20/PM0

	Ground In 13521-01-	vestigation -24	ıs Ireland			Report :	EN12457_	_2				
Location:	Galway R	acecourse	Ballybrit			Solids: V=	ô0g VOC jar	r, J=250g gl	lass jar, T=p	lastic tub		
	Stephen K	(ealy										
	24/3391									1		
EMT Sample No.	1-4	6-9	11-14	16-19	20-23							
Sample ID	TP03	TP03	TP04	TP04	TP04							
Depth	0.55	1.50	0.50	2.20	3.30						e attached no	
COC No / misc										abbrevia	ations and ac	cronyms
Containers	VJT	VJT	VJT	VJT	VJT							
Sample Date	22/02/2024	22/02/2024	22/02/2024	22/02/2024	22/02/2024							
Sample Type	Soil	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1	1							Method
Date of Receipt	27/02/2024	27/02/2024	27/02/2024	27/02/2024	27/02/2024					LOD LOR	Units	No.
Solid Waste Analysis												
CEN 10:1 Leachate				ļ!								
Mass of raw test portion	0.1063	0.1003	0.1111	0.176	0.098						kg	NONE/PM17
Dry Matter Content Ratio	84.5	89.8	80.8	51.1	91.7					<0.1	%	NONE/PM4
Leachant Volume	0.883	0.89	0.879	0.814	0.892						T	NONE/PM17
Moisture Content 105C (% Dry Weight)	18.4	11.3	23.8	95.7	9.0					<0.1	%	PM4/PM0
				!							I	
											l I	
											I	
				ļ!							!	
				ļ!							l	
											l I	
											1	
				'								
											1	
				ļ!							, !	
											l	
											ľ	
											1	
				'							I	
				ļ!							, J	
											l	
											i I	
											1	
				, , , , , , , , , , , , , , , , , , ,							I	
											1	
											1	
					1 1		1			1	· · · ·	

Client Name: Ground Investigations Ireland 13521-01-24 **Reference:** Location: Galway Racecourse Ballybrit Contact: Stephen Kealy

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 24/3391	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 24/3391

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

· · · · · · · · · · · · · · · · · · ·	
#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8		ICC-MRA	UKAS TESTING 4225
Attention :	Stephen Kealy		
Date :	12th March, 2024		
Your reference :	13521-01-24		
Our reference :	Test Report 24/3391 Batch 2		
Location :	Galway Racecourse Ballybrit		
Date samples received :	28th February, 2024		
Status :	Final Report		
Issue :	202403121510		

Thirty samples were received for analysis on 28th February, 2024 of which sixteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 72.979 kg of CO2

Scope 1&2&3 emissions - 172.469 kg of CO2

Authorised By:

Liza Klebe Project Co-ordinator

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

EMT Sample No.	84-87	88-91	92-95	96-99	100-103	104-107	108-111	112-115	116-119	120-123			
Sample ID	TP07	TP07	TP07	TP08	TP08	TP08	TP09	TP09	TP09	TP10			
Depth	0.50	1.50	2.50	0.45	1.40	2.30	0.25	1.50	2.90	0.30	Please se	e attached n	otes for all
COC No / misc												cronyms	
Containers	VJT												
Sample Date			26/02/2024		23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	26/02/2024			
Sample Type	Soil												
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	Method
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024			No.
Antimony	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Arsenic [#]	5.7	2.6	2.0	3.1	2.2	1.5	3.5	3.3	1.6	4.9	<0.5	mg/kg	TM30/PM15
Barium [#]	40	25	21	15	21	14	23	22	18	36	<1	mg/kg	TM30/PM15
Cadmium [#]	0.8	0.6	0.5	0.4	0.5	0.5	0.9	0.7	0.6	0.8	<0.1	mg/kg	TM30/PM15
Chromium #	27.0	10.8	9.2	14.5	7.5	7.6	12.4	9.4	8.3	18.9	<0.5	mg/kg	TM30/PM15
Copper [#] Lead [#]	13 22	7	6	7	6	4	8	7	5 <5	11	<1	mg/kg	TM30/PM15 TM30/PM15
	0.2	5 <0.1	<5 <0.1	6 <0.1	<5 <0.1	<5 <0.1	6 <0.1	<5	<5 0.1	16 <0.1	<5 <0.1	mg/kg	TM30/PM15 TM30/PM15
Mercury [#] Molybdenum [#]	0.2	0.3	0.1	<0.1 0.8	0.3	0.1	<0.1 0.5	<0.1 0.4	0.1	0.7	<0.1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Nickel [#]	22.2	10.8	8.1	9.0	7.3	5.5	10.9	9.6	6.7	18.7	<0.7	mg/kg	TM30/PM15
Selenium [#]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Zinc [#]	44	20	18	31	14	10	21	17	13	41	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene [#]	<0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	< 0.06	< 0.06	<0.06	<0.06	<0.06	<0.06	< 0.06	< 0.06	< 0.06	<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	<0.02 <0.07	< 0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	mg/kg	TM4/PM8 TM4/PM8
Benzo(bk)fluoranthene [#] Benzo(a)pyrene [#]	<0.07 <0.04	<0.07	<0.07 <0.04	mg/kg mg/kg	TM4/PM8								
Indeno(123cd)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	101	83	86	99	92	93	95	99	94	101	<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

EMT Sample No.	84-87	88-91	92-95	96-99	100-103	104-107	108-111	112-115	116-119	120-123			
Sample ID	TP07	TP07	TP07	TP08	TP08	TP08	TP09	TP09	TP09	TP10			
Depth	0.50	1.50	2.50	0.45	1.40	2.30	0.25	1.50	2.90	0.30	Please se	e attached n	otes for all
COC No / misc												cronyms	
Containers	VJT												
Sample Date	26/02/2024	26/02/2024	26/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	26/02/2024			
Sample Type	Soil												
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	Method No.
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024			110.
TPH CWG													
Aliphatics	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1		TM00/DM40
>C5-C6 (HS_1D_AL) [#] >C6-C8 (HS_1D_AL) [#]	<0.1 <0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12										
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM50/TW12 TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH_CU+HS_1D_AL)	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics													
>C5-EC7 (HS_1D_AR)*	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR) [#]	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH_CU+HS_1D_AR) [#] Total aliphatics and aromatics(C5-35) (EH_CU+HS_1D_Total)	<19 <38	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16 TM5/TM36/PM8/PM12/PM16
	~30	<38	<38	<38	<38	<38	<38	<38	<38	<38	<38	mg/kg	
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8										
PCB 153 [#] PCB 180 [#]	<5	<5	<5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 <5	<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8
	50								50	50		- 3/118	
Natural Moisture Content	24.9	10.3	9.0	12.9	9.3	6.4	9.7	11.5	9.1	19.1	<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	27.0	10.8	9.2	14.5	7.5	7.6	12.4	9.4	8.3	18.9	<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

ENT 500 NO:	24/0001										_		
EMT Sample No.	84-87	88-91	92-95	96-99	100-103	104-107	108-111	112-115	116-119	120-123			
Sample ID	TP07	TP07	TP07	TP08	TP08	TP08	TP09	TP09	TP09	TP10			
Depth	0.50	1.50	2.50	0.45	1.40	2.30	0.25	1.50	2.90	0.30	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	26/02/2024	26/02/2024	26/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	26/02/2024			
Sample Type	Soil												
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	Method
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	LOBILOI	Ginto	No.
Total Organic Carbon [#]	1.15	0.03	0.07	0.38	<0.02	<0.02	0.24	0.15	0.04	0.97	<0.02	%	TM21/PM24
Loss on Ignition [#]	6.1	<1.0	<1.0	1.8	<1.0	<1.0	1.2	<1.0	<1.0	4.5	<1.0	%	TM22/PM0
рН [#]	7.69	8.28	8.40	8.51	8.42	9.01	8.48	8.90	8.81	7.87	<0.01	pH units	TM73/PM11
A data ta Tarat	NAD		Num	Subcontracted									
Asbestos Type*	NAD		None	Subcontracted									

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

EMT Sample No.	124-127	128-131	132-135	136-139	140-143	144-147		 			
Sample ID	TP10A	TP10A	TP10A	TP11	TP11	TP11					
Depth	0.45	1.50	2.50	0.40	1.50	2.50			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT		 			
Sample Date		26/02/2024	26/02/2024		26/02/2024			 			
				Soil							
Sample Type	Soil	Soil	Soil		Soil	Soil					
Batch Number	2	2	2	2	2	2			LOD/LOR	Units	Method No.
Date of Receipt		28/02/2024	28/02/2024		28/02/2024	28/02/2024					
Antimony	<1	<1	<1	<1	<1	<1			<1	mg/kg	TM30/PM15
Arsenic [#] Barium [#]	6.9 46	3.0 27	2.2 21	4.2 26	2.7 28	2.7 25			<0.5 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Cadmium [#]	1.0	0.7	0.5	0.6	0.7	0.6			<0.1	mg/kg	TM30/PM15
Chromium #	26.0	10.6	8.3	15.8	9.7	9.9			<0.5	mg/kg	TM30/PM15
Copper [#]	18	8	6	10	8	7			<1	mg/kg	TM30/PM15
Lead [#]	21	5	<5	11	<5	6			<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Molybdenum [#]	0.8	0.4	0.2	1.0	0.3	0.3			<0.1	mg/kg	TM30/PM15
Nickel [#]	25.6	11.1	8.4	15.0	10.3	9.9			<0.7	mg/kg	TM30/PM15
Selenium [#]	<1	<1	<1	<1	<1	<1			<1	mg/kg	TM30/PM15
Zinc [#]	49	21	17	26	20	21			<5	mg/kg	TM30/PM15
PAH MS											
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		 	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		 	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03			<0.04 <0.03	mg/kg	TM4/PM8 TM4/PM8
Fluoranthene [#] Pyrene [#]	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03		 	< 0.03	mg/kg mg/kg	TM4/PM8
Benzo(a)anthracene [#]	<0.06	<0.06	< 0.06	< 0.06	< 0.06	<0.06		 	<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		 	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		 	<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64			<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05		 	< 0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene PAH Surrogate % Recovery	<0.02 98	<0.02 93	<0.02 102	<0.02 103	<0.02 96	<0.02 93			<0.02 <0	mg/kg %	TM4/PM8 TM4/PM8
PAR Surrogale % Recovery	90	93	102	103	90	93			~0	70	TIVI4/PIVIO
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30			<30	mg/kg	TM5/PM8/PM16

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

EMT Sample No.	124-127	128-131	132-135	136-139	140-143	144-147								
Sample ID	TP10A	TP10A	TP10A	TP11	TP11	TP11								
Depth	0.45	1.50	2.50	0.40	1.50	2.50			Please se	e attached n	otes for all			
COC No / misc									Please see attached notes for a abbreviations and acronyms					
Containers	VJT	VJT	VJT	VJT	VJT	VJT								
Sample Date	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024								
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil		-						
Batch Number	2	2	2	2	2	2			LOD/LOR	Units	Method No.			
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024					110.			
TPH CWG														
Aliphatics														
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12			
>C6-C8 (HS_1D_AL) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12 TM36/PM12			
>C8-C10 (HS_1D_AL)	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2			<0.1 <0.2	mg/kg mg/kg	TM36/PM12 TM5/PM8/PM16			
>C10-C12 (EH_CU_1D_AL) [#] >C12-C16 (EH_CU_1D_AL) [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM8/PM16			
>C12-C18 (EH_CU_1D_AL) >C16-C21 (EH_CU_1D_AL) [#]	<7	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16			
>C21-C35 (EH_CU_1D_AL)*	<7	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16			
Total aliphatics C5-35 (EH_CU+HS_1D_AL)	<19	<19	<19	<19	<19	<19			<19	mg/kg	TM5/TM36/PM8/PM12/PM16			
Aromatics														
>C5-EC7 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12			
>EC7-EC8 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12			
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12			
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM8/PM16			
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4			<4	mg/kg	TM5/PM8/PM16			
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16			
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM8/PM16			
Total aromatics C5-35 (EH_CU+HS_1D_AR)#	<19	<19	<19	<19	<19	<19			<19	mg/kg	TM5/TM36/PM8/PM12/PM16			
Total aliphatics and aromatics(C5-35) (EH_CU+HS_1D_Total)	<38	<38	<38	<38	<38	<38			<38	mg/kg	TM5/TM36/PM8/PM12/PM18			
MTBE [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM36/PM12			
Benzene [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM36/PM12			
Toluene [#]	<5	<5	<5	9	<5	<5			<5	ug/kg	TM36/PM12			
Ethylbenzene [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM36/PM12			
m/p-Xylene [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM36/PM12			
o-Xylene [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM36/PM12			
PCB 28 [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
PCB 52 [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
PCB 101 #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
PCB 118 [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
PCB 138 [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
PCB 153 [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
PCB 180 [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8			
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35			<35	ug/kg	TM17/PM8			
Natural Moisture Content	17.7	10.7	8.3	10.8	11.0	7.9			<0.1	%	PM4/PM0			
Hoxavalant Chromiser#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	malka	TM38/PM20			
Hexavalent Chromium [#] Chromium III	26.0	<0.3 10.6	<0.3 8.3	15.8	<0.3 9.7	<0.3 9.9			<0.3	mg/kg mg/kg	NONE/NONE			
	20.0	10.0	0.0	13.0	3.1	3.5			-0.0	iiig/kg				
Total Cyanide [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	mg/kg	TM89/PM45			

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : Solid

ENIT JOD NO:	24/3391										
EMT Sample No.	124-127	128-131	132-135	136-139	140-143	144-147					
Sample ID	TP10A	TP10A	TP10A	TP11	TP11	TP11					
Depth	0.45	1.50	2.50	0.40	1.50	2.50	 		Please se	e attached n	otes for all
COC No / misc										ations and ad	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	2	2	2	2	2	2			LOD/LOR	Units	Method
Date of Receipt											No.
Total Organic Carbon [#]	1.18	0.05	<0.02	0.48	0.02	0.03			<0.02	%	TM21/PM24
Loss on Ignition [#]	<1.0	<1.0	<1.0	2.0	<1.0	<1.0			<1.0	%	TM22/PM0
рН #	8.03	8.32	8.38	7.84	8.44	8.42			<0.01	pH units	TM73/PM11
Asbestos Type*	NAD	NAD	NAD	NAD	NAD	NAD				None	Subcontracted
	N/D	TUXE	TU LD	TUXE	NV LD	TUXE				Hono	

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : CEN 10:1 1 Batch

EMT Sample No.	84-87	88-91	92-95	96-99	100-103	104-107	108-111	112-115	116-119	120-123			
Sample ID	TP07	TP07	TP07	TP08	TP08	TP08	TP09	TP09	TP09	TP10			
Depth	0.50	1.50	2.50	0.45	1.40	2.30	0.25	1.50	2.90	0.30	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	26/02/2024	26/02/2024	26/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	26/02/2024			
Sample Type	Soil												
Batch Number	2	2	2	2	2	2	2	2	2	2			Martina
Date of Receipt		28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	LOD/LOR	Units	Method No.
Dissolved Antimony (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM170/PM14
Dissolved Arsenic (A10) [#]	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM170/PM14
Dissolved Barium (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM170/PM14
Dissolved Cadmium (A10) [#]	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM170/PM14
Dissolved Chromium (A10) [#]	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM170/PM14
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM170/PM14
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM170/PM14
Dissolved Mercury (A10)#	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM170/PM14
Dissolved Molybdenum (A10)#	<0.02	<0.02	<0.02	0.05	0.02	0.03	0.04	0.04	<0.02	<0.02	<0.02	mg/kg	TM170/PM14
Dissolved Nickel (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM170/PM14
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM170/PM14
Dissolved Zinc (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM170/PM14
Total Phenols HPLC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	<5	<5	<5	18	16	<5	<5	15	17	84	<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1115	0.1013	0.1149	0.107	0.1006	0.0989	0.1024	0.1	0.0984	0.1082		kg	NONE/PM17
Chloride #	3	<3	<3	4	3	<3	6	6	3	5	<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
Dissolved Organic Carbon	2	<2	<2	<2	<2	<2	3	<2	<2	3	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	20	<20	<20	<20	<20	<20	30	<20	<20	30	<20	mg/kg	TM60/PM0
Total Dissolved Solids [#]	<350	<350	<350	450	<350	<350	610	<350	<350	890	<350	mg/kg	TM20/PM0
	I	1	I					I		I		I	i .

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : CEN 10:1 1 Batch

EMT Sample No.	124-127	128-131	132-135	136-139	140-143	144-147					
Sample ID	TP10A	TP10A	TP10A	TP11	TP11	TP11					
Depth	0.45	1.50	2.50	0.40	1.50	2.50			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	2	2	2	2	2	2			- 05 # 05		Method
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024			LOD/LOR	Units	No.
Dissolved Antimony (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM170/PM14
Dissolved Arsenic (A10) [#]	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025			<0.025	mg/kg	TM170/PM14
Dissolved Barium (A10) [#]	<0.03	<0.03	<0.03	0.03	<0.03	<0.03			<0.03	mg/kg	TM170/PM14
Dissolved Cadmium (A10) [#]	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	mg/kg	TM170/PM14
Dissolved Chromium (A10) [#]	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015			<0.015	mg/kg	TM170/PM14
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07			<0.07	mg/kg	TM170/PM14
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	mg/kg	TM170/PM14
Dissolved Mercury (A10) [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	mg/kg	TM170/PM14
Dissolved Molybdenum (A10)#	<0.02	<0.02	<0.02	0.04	<0.02	<0.02			<0.02	mg/kg	TM170/PM14
Dissolved Nickel (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM170/PM14
Dissolved Selenium (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM170/PM14
Dissolved Zinc (A10) [#]	0.05	<0.03	<0.03	<0.03	0.04	0.05			<0.03	mg/kg	TM170/PM14
Total Phenols HPLC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3			<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	42	22	23	207	6	17			<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1084	0.1001	0.0996	0.1074	0.101	0.0991				kg	NONE/PM17
Chloride [#]	4	4	3	5	<3	<3			<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09				kg	NONE/PM17
Dissolved Organic Carbon	3	<2	<2	6	<2	<2			<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	<20	<20	60	<20	<20			<20	mg/kg	TM60/PM0
Total Dissolved Solids [#]	810	440	<350	1471	<350	<350			<350	mg/kg	TM20/PM0

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : EN12457_2

											_		
EMT Sample No.	84-87	88-91	92-95	96-99	100-103	104-107	108-111	112-115	116-119	120-123			
Sample ID	TP07	TP07	TP07	TP08	TP08	TP08	TP09	TP09	TP09	TP10			
Depth	0.50	1.50	2.50	0.45	1.40	2.30	0.25	1.50	2.90	0.30	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	26/02/2024	26/02/2024	26/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	23/02/2024	26/02/2024			
Sample Type	Soil												
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD LOR	11.36	Method
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	LOD LOR	Units	No.
Solid Waste Analysis													
CEN 10:1 Leachate													
<u></u>													
Mass of raw test portion	0.1115	0.1013	0.1149	0.107	0.1006	0.0989	0.1024	0.1	0.0984	0.1082		kg	NONE/PM17
Dry Matter Content Ratio	80.9	88.8	78.7	84.0	89.8	91.2	87.6	90.1	91.7	82.9	<0.1	%	NONE/PM4 NONE/PM17
Leachant Volume	0.879	0.889	0.876	0.883	0.89	0.891	0.887	0.89	0.892	0.881		I	
Moisture Content 105C (% Dry Weight)	23.5	12.6	27.1	19.1	11.4	9.7	14.2	11.0	9.1	20.7	<0.1	%	PM4/PM0

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 13521-01-24 Galway Racecourse Ballybrit Stephen Kealy 24/3391

Report : EN12457_2

									_		
EMT Sample No.	124-127	128-131	132-135	136-139	140-143	144-147					
Sample ID	TP10A	TP10A	TP10A	TP11	TP11	TP11					
Depth	0.45	1.50	2.50	0.40	1.50	2.50			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024	26/02/2024					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	2	2	2	2	2	2					Method
Date of Receipt	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024	28/02/2024			LOD LOR	Units	No.
Solid Waste Analysis											
CEN 10:1 Leachate											
OLN 10.1 Leachate											
Mass of raw test portion	0.1084	0.1001	0.0996	0.1074	0.101	0.0991				kg	NONE/PM17
Dry Matter Content Ratio Leachant Volume	82.9	89.8	90.5	83.7	89.1	91.2			<0.1	%	NONE/PM4 NONE/PM17
Leachant Volume	0.881	0.89	0.891	0.883	0.889	0.891				I	NONE/PMIT
Moisture Content 105C (% Dry Weight)	20.7	11.4	10.5	19.4	12.2	9.6			<0.1	%	PM4/PM0
											-
											-
											-
											_

Client Name:Ground Investigations IrelandReference:13521-01-24Location:Galway Racecourse BallybritContact:Stephen Kealy

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 24/3391	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 24/3391

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

Age of Diesel

The age of release estimation is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996).

Age estimation should be treated with caution as it can be influenced by site specific factors of which the laboratory are not aware.

· · · · · · · · · · · · · · · · · · ·	
#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 24/3391

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

EMT Job No: 24/3391

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	

Method Code Appendix

APPENDIX 6 – Groundwater Monitoring

	Instr (A)	Level (mOD)		1				Client				BH01			
	Instr (A)	Level (mOD)	53363					Galway Co	ounty Co	uncil					Number 3521-01-2
	Instr (A)	Level (mOD)			Ground I	_evel (m	OD)	Project Co	ntractor					5	Sheet
	Instr (A)	Level (mOD)		85 E 727902 N	5	1.78		Ground In	vestigatio	ons Irelan	d				1/1
			Depth (m)	Description				G	roundwa	ter Strik	es Durin	g Drilling		·	
					Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	v Rate		Read	ings		Depth Sealed (m)
<u> </u>							(m)	(m)			5 min	10 min	15 min	20 min	(m)
· · · · · · · · · · · · · · · · · · ·				Cement/Bentonite Grout				Groundwater Observations During Drilling							
<u>8:00</u>								Start of S	hift			E	nd of Sh	ift	
					Date	Time	Deptl Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
··································		50.28	50.28 1.50												
					Instrument Groundwater Observations										
					Inst.	A] Type	:								
					Date	Instrumer		t [A]	Remarks						
				Slotted Standpipe	Date	Time	Deptl (m)	h Level (mOD)							
ၛၣၴ႞ၟၛၣၴ႞ၛ႞ၟၛၣၴ႞ၟၛၣၟ႞ၟၛ ၯႍ႞ၣၛႄ႞ၯ႞ၛၣၯ႞ၣၛၣၟ႞ၛၟ႞ၟၛၣၟၛ ၯ	945 - 1.1.2. 2015 - 1.1.2. 2015 - 1.1.2. 2016 - 1.1.2. 2017 - 1.1.2. 201				18/04/24	09:00	2.84	4 48.94							
		47.78 47.48	4.00 4.30	Cement/Bentonite Grout											

Installat	tion	Туре		Dimensi	www.gii.ie			C	Co. Gálwa Client Galway Co	-	uncil				1	Job Number 3521-01-2	
				Location 53373	n 7 E 727890 N	Ground 5	Level (m 0.06		Project Co Ground In			nd				Sheet 1/1	
.egend	Water	Instr (A)	Level (mOD)	Depth (m)	Description			I	G	roundwa	ter Strik	es Durin	g Drilling	I	I		
						Date	Time	Depth Struck	Casing Depth (m)	Inflo	v Rate		Read	ings		Depth Seale (m)	
						(m)	(m)			5 min	10 min	15 min	20 min	(m)			
					Cement/Bentonite Grout				Gre	oundwat	er Obse	rvations	During D	orilling			
<u> </u>									Start of S				1	End of Sh	-		
<u>.</u>						Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD	
			49.06	1.00		Inst.	[A] Type	:	Instru	Iment G	roundwa	ter Obse	ervations				
	00,00,00,00,00,00,00,00,00,00,00,00,00,					Date	_	trument	[A]			Remarks	arks				
0 <u>.0</u> 0							Time	Depth (m)									
		া হৈ ০০ জিল পি জেলে পি পি জিলে পি পি জিলে পি পি জিলে পি কি জিলে পি জিলে পি জিলে পি জিলে জিলে পি জিলে পি জিলে জিলে পি জিল পি জিলে পি জিলে জিলে পি জিলে জিলে পি জিলে পি জিলে জিলে জিলে পি জিলে পি জিলে জিলে পি জিলে জিলে জিলে পি জিলে পি জি	48.06	6 2.00	Slotted Standpipe	18/04/24	09:52	1.13	48.93								

Grou				ound Investigations Ireland Ltd www.gii.ie					Site Galway Racecourse Geotechnical Investigations, Ballybrit, Co. Galway							Borehole Number BH03	
				Dimensions					Client Galway County Council							Job Number 13521-01-24	
				Location	1	Ground	Level (m	OD) F	Project Contractor							Sheet	
				53370	0 E 727811 N	47.71			Ground Investigations Ireland							1/1	
Legend	Water	nstr (A)	Level (mOD)	Depth (m)	Description				Groundwater Strikes During Drilling							<u></u>	
						Date Time Dept			Casing	Inflow Rate			Readings			Depth	
						Date	Time	Struck (m)	Casing Depth (m)	Inflov	v Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)	
· · · · · · · · · · · · · · · · · · ·																	
					Cement/Bentonite Grout												
0 <u>.0</u> 0						Groundwater Observations During Drilling											
<u></u> a							Start of			Shift			End of Shift				
<u> </u>						Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	
<u>, , , , , , , , , , , , , , , , , , , </u>			46.21	1.50													
<u>, , , , , , , , , , , , , , , , , , , </u>			40.21	1.50													
0 <u>.0</u> 0																	
0 <u>.0</u> .0																	
						Instrument Groundwater Observations											
<u> </u>						Inst.	[A] Type	:									
<u></u>						Date	Ins	trument	[A]	- Remarks							
0 <u>00</u> 0							Time	Depth (m)	Level (mOD)								
<u>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	0,00,00,0000				Slotted Standpipe	18/04/24	10:56	2.51	45.20								
<u>6</u>																	
0 <u>0</u> 0																	
.0 <u>.0</u> .0																	
0 <u>.0</u> 0																	
<u>0.0.0</u>	000000000000000000000000000000000000000																
<u>6 0 0 0</u>																	
<u>6 0 0 0</u>	00,00,00,00,00,00,00,00,00,00,00,00,00,	2000 - 020 of 1000 - 020 1000 - 020 1000 - 020 1000 - 020 1000 - 020															
<u>0</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
·0 · · · · · ·			43.41 43.31	4.30 4.40	Cement/Bentonite Grout												
00			43.31	4.40	Cement/Dentonite Grout												